Large high-quality datasets of human body shape and kinematics lay the foundation for modelling and simulation approaches in computer vision, computer graphics, and biomechanics. Creating datasets that combine naturalistic recordings with high-accuracy data about ground truth body shape and pose is challenging because different motion recording systems are either optimized for one or the other. We address this issue in our dataset by using different hardware systems to record partially overlapping information and synchronized data that lend themselves to transfer learning. This multimodal dataset contains 9 hours of optical motion capture data, 17 hours of video data from 4 different points of view recorded by stationary and hand-held cameras, and 6.6 hours of inertial measurement units data recorded from 60 female and 30 male actors performing a collection of 21 everyday actions and sports movements. The processed motion capture data is also available as realistic 3D human meshes. We anticipate use of this dataset for research on human pose estimation, action recognition, motion modelling, gait analysis, and body shape reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.