Silk nanoparticles have demonstrated utility across a range of biomedical applications, especially as drug delivery vehicles. Their fabrication by bottom-up methods such as nanoprecipitation, rather than top-down manufacture, can improve critical nanoparticle quality attributes. Here, we establish a simple semi-batch method using drop-by-drop nanoprecipitation at the lab scale that reduces special-cause variation and improves mixing efficiency. The stirring rate was an important parameter affecting nanoparticle size and yield (400 < 200 < 0 rpm), while the initial dropping height (5.5 vs 7.5 cm) directly affected nanoparticle yield. Varying the nanoparticle standing time in the mother liquor between 0 and 24 h did not significantly affect nanoparticle physicochemical properties, indicating that steric and charge stabilizations result in high-energy barriers for nanoparticle growth. Manufacture across all tested formulations achieved nanoparticles between 104 and 134 nm in size with high β-sheet content, spherical morphology, and stability in aqueous media for over 1 month at 4 °C. This semi-automated drop-by-drop, semi-batch silk desolvation offers an accessible, higher-throughput platform for standardization of parameters that are difficult to control using manual methodologies.
The maintenance and expansion of the cells required for formation of tissue-engineered cartilage has, to date, proven difficult. This is, in part, due to the initial solid phase extracellular matrix demanded by the cells inhabiting this avascular tissue. Herein, we engineer an innovative alginate-fibronectin microfluidic-based carrier construct (termed a chondrobag) equipped with solid phase presentation of growth factors that support skeletal stem cell chondrogenic differentiation while preserving human articular chondrocyte phenotype. Results demonstrate biocompatibility, cell viability, proliferation and tissue-specific differentiation for chondrogenic markers SOX9, COL2A1 and ACAN. Modulation of chondrogenic cell hypertrophy, following culture within chondrobags loaded with TGF-β1, was confirmed by down-regulation of hypertrophic genes COL10A1 and MMP13. MicroRNAs involved in the chondrogenesis process, including miR-140, miR-146b and miR-138 were observed. Results demonstrate the generation of a novel high-throughput, microfluidic-based, scalable carrier that supports human chondrogenesis with significant implications therein for cartilage repair-based therapies.
Origami folding is an easy, cost-effective, and scalable fabrication method for changing a flat material into a complex 3D functional shape. Here, we created semicrystalline silk films doped with iron oxide particles by mold casting and annealing. The flat silk films could be loaded with natural dyes and folded into 3D geometries using origami principles following plasticization. They performed locomotion under a magnetic field, were reusable, and displayed colorimetric stability. The critical parameters for the design of the semi-autonomous silk film, including ease of folding, shape preservation, and locomotion in the presence of a magnetic field, were characterized, and pH detection was achieved by eye and by digital image colorimetry with a response time below 1 min. We demonstrate a practical application—a battery-free origami silk boat—as a colorimetric sensor for waterborne pollutants, which was reusable at least five times. This work introduces silk eco-sensors and merges responsive actuation and origami techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.