The transcription factor p53 has been shown to mediate cellular responses to diverse stresses such as DNA damage. However, the function of p53 in cellular differentiation in response to growth factor stimulations has remained obscure. We present evidence that p53 regulates cellular differentiation by modulating signaling of the TGFβ family of growth factors during early Xenopus embryogenesis. We show that p53 functionally and physically interacts with the activin and bone morphogenetic protein pathways to directly induce the expression of the homeobox genes Xhox3 and Mix.1/2. Furthermore, functional knockdown of p53 in embryos by an antisense morpholino oligonucleotide reveals that p53 is required for the development of dorsal and ventral mesoderm. Our data illustrate a pivotal role of interplay between the p53 and TGFβ pathways in cell fate determination during early vertebrate embryogenesis.
A rhythmic heart beat is coordinated by conduction of pacemaking impulses through the cardiac conduction system. Cells of the conduction system, including Purkinje fibers, terminally differentiate from a subset of cardiac muscle cells that respond to signals from endocardial and coronary arterial cells. A vessel-associated paracrine factor, endothelin, can induce embryonic heart muscle cells to differentiate into Purkinje fibers both in vivo and in vitro. During this phenotypic conversion, the conduction cells down-regulate genes characteristic of cardiac muscle and up-regulate subsets of genes typical of both skeletal muscle and neuronal cells. In the present study, we examined the expression of myogenic transcription factors associated with the switch of the gene expression program during terminal differentiation of heart muscle cells into Purkinje fibers. In situ hybridization analyses and immunohistochemistry of embryonic and adult hearts revealed that Purkinje fibers up-regulate skeletal and atrial muscle myosin heavy chains, connexin-42, and neurofilament protein. Concurrently, a cardiac muscle-specific myofibrillar protein, myosin-binding protein-C (cMyBP-C), is down-regulated. During this change in transcription, however, Purkinje fibers continue to express cardiac muscle transcription factors, such as Nkx2.5, GATA4, and MEF2C. Importantly, significantly higher levels of Nkx2.5 and GATA4 mRNAs were detected in Purkinje fibers as compared to ordinary heart muscle cells. No detectable difference was observed in MEF2C expression. In culture, endothelin-induced Purkinje fibers from embryonic cardiac muscle cells dramatically down-regulated cMyBP-C transcription, whereas expression of Nkx2.5 and GATA4 persisted. In addition, myoD, a skeletal muscle transcription factor, was up-regulated in endothelin-induced Purkinje cells, while Myf5 and MRF4 transcripts were undetectable in these cells. These results show that during and after conversion from heart muscle cells, Purkinje fibers express a unique myogenic transcription factor program. The mechanism underlying down-regulation of cardiac muscle genes and up-regulation of skeletal muscle genes during conduction cell differentiation may be independent from the transcriptional control seen in ordinary cardiac and skeletal muscle cells.
Bone morphogenetic proteins (BMPs) have been shown to play a key role in controlling ectodermal cell fates by inducing epidermis at the expense of neural tissue during gastrulation. Here, we present evidence that the Xenopus POU class V transcription factor XOct-25 regulates ectodermal cell fate decisions by inhibiting the competence of ectodermal cells to respond to BMP during Xenopus embryogenesis. When overexpressed in the ectoderm after the blastula stage, XOct-25 suppressed early BMP responses of ectodermal cells downstream of BMP receptor activation and promoted neural induction while suppressing epidermal differentiation. In contrast, inhibition of XOct-25 function in the prospective neuroectoderm resulted in expansion of epidermal ectoderm at the expense of neuroectoderm. The reduction of neural tissue by inhibition of XOct-25 function could be rescued by decreasing endogenous BMP signaling, suggesting that XOct-25 plays a role in the formation of neural tissue at least in part by inhibiting BMP-mediated epidermal induction (neural inhibition). This hypothesis is supported by the observation that ectodermal cells from XOct-25 morphants were more sensitive to BMP signaling than cells from controls in inducing both immediate early BMP target genes and epidermis at the expense of neural tissue, while cells overexpressing XOct-25 are less competent to respond to BMP-mediated induction. These results document an essential role for XOct-25 in commitment to neural or epidermal cell fates in the ectoderm and highlight the importance of a regulatory mechanism that limits competence to respond to BMP-mediated embryonic induction.
The formation of the dorsal-ventral (DV) and anterior-posterior (AP) axes, fundamental to the body plan of animals, is regulated by several groups of polypeptide growth factors including the TGF-β, FGF, and Wnt families. In order to ensure the establishment of the body plan, the processes of DV and AP axis formation must be linked and coordinately regulated. However, the molecular mechanisms responsible for these interactions remain unclear. Here, we demonstrate that the forkhead box transcription factor FoxB1, which is upregulated by the neuralizing factor Oct-25, plays an important role in the formation of the DV and AP axes. Overexpression of FoxB1 promoted neural induction and inhibited BMP-dependent epidermal differentiation in ectodermal explants, thereby regulating the DV patterning of the ectoderm. In addition, FoxB1 was also found to promote the formation of posterior neural tissue in both ectodermal explants and whole embryos, suggesting its involvement in embryonic AP patterning. Using knockdown analysis, we found that FoxB1 is required for the formation of posterior neural tissues, acting in concert with the Wnt and FGF pathways. Consistent with this, FoxB1 suppressed the formation of anterior structures via a process requiring the function of XWnt-8 and eFGF. Interestingly, while downregulation of FoxB1 had little effect on neural induction, we found that it functionally interacted with its upstream factor Oct-25 and plays a supportive role in the induction and/or maintenance of neural tissue. Our results suggest that FoxB1 is part of a mechanism that fine-tunes, and leads to the coordinated formation of, the DV and AP axes during early development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.