The mucosal immune system provides the first line of defense against inhaled and ingested pathogenic microbacteria and viruses. This defense system, to a large extent, is mediated by the actions of secretory IgA. In this study, we screened 140 strains of lactic acid bacteria for induction of IgA production by murine Peyer’s patch cells. We selected one strain and named it Lactobacillus plantarum AYA. We found that L. plantarum AYA-induced production of IL-6 in Peyer’s patch dendritic cells, with this production promoting IgA+ B cells to differentiate into IgA-secreting plasma cells. We also observed that oral administration of L. plantarum AYA in mice caused an increase in IgA production in the small intestine and lung. This production of IgA correlated strongly with protective ability, with the treated mice surviving longer than the control mice after lethal influenza virus infection. Our data therefore reveals a novel immunoregulatory role of the L. plantarum AYA strain which enhances mucosal IgA production and provides protection against respiratory influenza virus infection.
A molecular basis for Cl- re-absorption has not been well-characterized in salivary ductal cells. Previously, we found strong expression of a rat homologue proposed to be Ca2+-dependent Cl- channels (rCLCA) in the intralobular ducts of the rat submandibular gland. To address the question as to whether rCLCA and cystic fibrosis transmembrane conductance regulator (CFTR) are involved in Cl- re-absorption, we evaluated the electrolyte content of saliva from glands pre-treated with a small interfering RNA (siRNA). Retrograde injection into a given submandibular duct of an siRNA designed to knock down either rCLCA or CFTR reduced the expression of each of the proteins. rCLCA and CFTR siRNAs significantly increased Cl- concentration in the final saliva during pilocarpine stimulation. These results represent the first in vivo evidence for a physiological significance of rCLCA, along with CFTR, in transepithelial Cl- transport in the ductal system of the rat submandibular gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.