Abstract— A 1‐D LED‐backlight‐scanning technique and a 2‐D local‐dimming technique for large LCD TVs are presented. These techniques not only reduce the motion‐blur artifacts by means of impulse representation of images in video, but also increase the static contrast ratio by means of local dimming in the image(s). Both techniques exploit a unique feature of an LED backlight in large LCD TVs in which the whole panel is divided into a pre‐defined number of regions such that the luminance in each region is independently controllable. The proposed techniques are implemented in a Xilinx FPGA and demonstrated on a Samsung 40‐in. LCD TV. Measurement results show that the proposed techniques significantly reduce the motion‐blur artifacts, enhance the static contrast ratio by about 3×, and reduce the power consumption by 10% on average.
An effective thermal management scheme, called active bank switching, for temperature control in the register file of a microprocessor is presented. The idea is to divide the physical register file into two equal-sized banks, and to alternate between the two banks when allocating new registers to the instruction operands. Experimental results show that this periodic active bank switching scheme achieves 3.4℃ of steady-state temperature reduction, with a mere 0.75% average performance penalty.
In this paper, we propose an effective dynamic thermal management (DTM) scheme for MPEG-2 decoding by allowing some degree of spatiotemporal quality degradation. Given a target MPEG-2 decoding time, we dynamically select either an intraframe spatial degradation or an inter-frame temporal degradation strategy in order to make sure that the microprocessor chip will continue to stay in a thermally safe state of operation, albeit with certain amount of image/video quality loss. For our experiments, we use the MPEG-2 decoder program of MediaBench and modify/combine Wattch and HotSpot for the power and thermal simulations and measurements, respectively. Our experimental results show that we achieve thermally safe state with spatial quality degradation of 0.12 Root Mean Square Error (RMSE) and with frame drop rate of 12.5% on average.
In this paper, we propose an effective dynamic thermal management (DTM) scheme for MPEG-2 decoding by allowing some degree of spatiotemporal quality degradation. Given a target MPEG-2 decoding time, we dynamically select either an intraframe spatial degradation or an inter-frame temporal degradation strategy in order to make sure that the microprocessor chip will continue to stay in a thermally safe state of operation, albeit with certain amount of image/video quality loss. For our experiments, we use the MPEG-2 decoder program of MediaBench and modify/combine Wattch and HotSpot for the power and thermal simulations and measurements, respectively. Our experimental results show that we achieve thermally safe state with spatial quality degradation of 0.12 Root Mean Square Error (RMSE) and with frame drop rate of 12.5% on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.