The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn's magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn's magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn's ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed
No abstract
Abstract.Odin is a satellite with a combined astronomy and aeronomy mission. It is designed for observations of species difficult or impossible to observe from ground, especially water and oxygen. The main instrument is a radiometer, operating in the frequency range 486-581 GHz and at 118.75 GHz. Its double-reflector telescope has a 1.1 m primary and the front-end amplifiers are cooled for maximum sensitivity. A 3-axis-stabilisation system provides a pointing accuracy better than 10 . Odin was developed on behalf of the space agencies in Sweden, Canada, France and Finland and was launched into a sun synchronous circular orbit in February 2001. The Odin Science Team, composed of astronomers and aeronomers from the partner countries, has established the observing programme and is responsible for all scientific matters regarding the Odin project. The spacecraft and instruments are performing well and operations are expected to continue well beyond the nominal two-year lifetime.
[1] Gamma-Ray, Neutron, and Alpha-Particle Spectrometers (GRS, NS, and APS, respectively) were included in the payload complement of Lunar Prospector (LP). Specific objectives of the GRS were to map abundances of Fe, Ti, Th, K, Si, O, Mg, Al, and Ca to depths of 20 cm. Those of the NS were to search for water ice to depths of 100 cm near the lunar poles and to map regolith maturity. Objectives of the APS were to search for, map, and provide a measure of the time history of gaseous release events at the lunar surface. The purpose of this paper is to document the mechanical, analog electronic, digital electronic, and microprocessor designs of the suite of spectrometers, present a representative sample of the calibrated response functions of all sensors, and document the operation of all three LP spectrometers in sufficient detail as to enable the full knowledgeable use of all data products that were archived in the Planetary Data System for future use by the planetary-science community.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.