At present flexible electronic devices are under extensive development and, among them, flexible organic light-emitting diode displays are the closest to a large market deployment. One of the remaining unsolved challenges is high throughput production of impermeable flexible transparent barrier layers that protect sensitive light-emitting materials against ambient moisture. The present studies deal with the adaptation of the atomic layer deposition (ALD) process to high-throughput roll-to-roll production using the spatial ALD concept. We report the development of such a process for the deposition of 20 nm thickness Al2O3 diffusion barrier layers on 500 mm wide polymer webs. The process uses trimethylaluminum and water as precursors at a substrate temperature of 105 °C. The observation of self-limiting film growth behavior and uniformity of thickness confirms the ALD growth mechanism. Water vapor transmission rates for 20 nm Al2O3 films deposited on polyethylene naphthalate (PEN) substrates were measured as a function of substrate residence time, that is, time of exposure of the substrate to one precursor zone. Moisture permeation levels measured at 38 °C/90% relative humidity by coulometric isostatic–isobaric method were below the detection limit of the instrument (<5 × 10−4 g/m2 day) for films coated at web moving speed of 0.25 m/min. Measurements using the Ca test indicated water vapor transmission rates ∼5 × 10−6 g/m2 day. Optical measurements on the coated web showed minimum transmission of 80% in the visible range that is the same as the original PEN substrate.
The moisture barrier and heat sealability properties of polylactide (PLA) extrusioncoated paperboard were investigated. The fi rst part of the study focused on the infl uences of coating weight and surroundings temperature and relative humidity on the water vapour transmission rate (WVTR) of the structure. The outcome arising from this part was a simple and practical equation that allows calculating the WVTR as a function of PLA coating weight under specifi c thermo-hygrometric conditions. The second part of the study investigated the effect of heat treatments between 100 and 150°C on the WVTR and heat sealability of a 20 g/m 2 PLA-coated paperboard. According to the results, the lowest WVTR values achieved were about 2.5 times lower than the WVTR of the untreated structure. Presumably, the PLA coating experienced two types of reordering mechanisms: crystalline growth and packing of the amorphous structure. The greatest barrier improvement was achieved when both of these mechanisms were accumulated effectively. This was observed from the samples after a 40 min treatment at 130°C. Ultimately, the crystalline growth was experienced by PLA at 100-130°C temperatures. The packing of the amorphous section, which was also accumulated at higher temperatures, was suggested to be the decisive factor infl uencing WVTR. According to the heat sealing results, the heat treatments causing crystalline growth resulted in considerably increased sealing temperatures and reduced applicability of the material in high-speed packaging applications. The treatments at 140-150°C caused only a slight increase in the sealing temperature and maintained the sealing performance of PLA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.