Figure 1: 3D display with content-adaptive parallax barriers. We show that light field display using dual-stacked LCDs can be cast as a matrix approximation problem, leading to a new set of content-adaptive parallax barriers. (Left, Top) A 4D light field, represented as a 2D array of oblique projections. (Left, Bottom) A dual-stacked LCD displays the light field using content-adaptive parallax barriers, confirming both vertical and horizontal parallax. (Middle and Right) A pair of content-adaptive parallax barriers, drawn from a rank-9 decomposition of the reshaped 4D light field matrix. Compared to conventional parallax barriers, with heuristically-determined arrays of slits or pinholes, content adaptation allows increased display brightness and refresh rate while preserving the fidelity of projected images. AbstractWe optimize automultiscopic displays built by stacking a pair of modified LCD panels. To date, such dual-stacked LCDs have used heuristic parallax barriers for view-dependent imagery: the front LCD shows a fixed array of slits or pinholes, independent of the multi-view content. While prior works adapt the spacing between slits or pinholes, depending on viewer position, we show both layers can also be adapted to the multi-view content, increasing brightness and refresh rate. Unlike conventional barriers, both masks are allowed to exhibit non-binary opacities. It is shown that any 4D light field emitted by a dual-stacked LCD is the tensor product of two 2D masks. Thus, any pair of 1D masks only achieves a rank-1 approximation of a 2D light field. Temporal multiplexing of masks is shown to achieve higher-rank approximations. Non-negative matrix factorization (NMF) minimizes the weighted Euclidean distance between a target light field and that emitted by the display. Simulations and experiments characterize the resulting content-adaptive parallax barriers for low-rank light field approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.