This paper addresses the problem of detecting misleading information related to COVID-19. We propose a misleading-information detection model that relies on the World Health Organization, UNICEF, and the United Nations as sources of information, as well as epidemiological material collected from a range of fact-checking websites. Obtaining data from reliable sources should assure their validity. We use this collected ground-truth data to build a detection system that uses machine learning to identify misleading information. Ten machine learning algorithms, with seven feature extraction techniques, are used to construct a voting ensemble machine learning classifier. We perform 5-fold cross-validation to check the validity of the collected data and report the evaluation of twelve performance metrics. The evaluation results indicate the quality and validity of the collected ground-truth data and their effectiveness in constructing models to detect misleading information.
With the ageing population, mobility is an important issue and it deters the elderlies to visit health clinics on a regular basis. Individuals with disabilities also face the same obstacles for their out-of-home medical visits. In addition, people living in remote areas often do not get the needed health care attention unless they are willing to spend the time, effort and cost to travel. Advances in information and telecommunication technologies have made telemedicine possible. Using the latest sensor technologies, a person's vital data can be collected in a smart home environment. The bio-information can then be transferred wirelessly or via the Internet to medical databases and the healthcare professionals. Using the appropriate sensing apparatus at a smart home setting, patients, elderlies and people with disabilities can have their health signals and information examined on a realtime and archival basis. Recovery process can be charted on a regular basis. Remote emergency alerts can be intercepted and responded quickly. Health deterioration can be monitored closely enabling corrective actions. Medical practitioners can therefore provide the necessary healthrelated services to more people. This paper surveys and compiles the state-of-the-art smart home technologies and telemedicine systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.