There is a marked increase in delivery services in urban areas, and with Jeff Bezos claiming that 86% of the orders that Amazon ships weigh less than 5 lbs, the time is ripe for investigation into economical methods of automating the final stage of the delivery process. With the advent of semi-autonomous drone delivery services, such as Irish startup 'Manna', and Malta's 'Skymax', the final step of the delivery journey remains the most difficult to automate. This paper investigates the use of simple images captured by a single RGB camera on a UAV to distinguish between safe and unsafe landing zones. We investigate semantic image segmentation frameworks as a way to identify safe landing zones and demonstrate the accuracy of lightweight models that minimise the number of sensors needed. By working with images rather than video we reduce the amount of energy needed to identify safe landing zones for a drone, without the need for human intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.