Nasopharyngeal carcinoma (NPC) is an EBV-associated epithelial malignancy prevalent in southern China. Presence of treatment-resistant cancer stem cells (CSC) may associate with tumor relapse and metastasis in NPC. ICG-001 is a specific CBP/β-catenin antagonist that can block CBP/β-catenin-mediated transcription of stem cell associated genes and enhance p300/β-catenin-mediated transcription, thereby reducing the CSC-like population via forced differentiation. In this study, we aimed to evaluate the effect of ICG-001 on the CSC-like population, and the combination effect of ICG-001 with cisplatin in the C666-1 EBV-positive NPC cells. Results showed that ICG-001 inhibited C666-1 cell growth and reduced expression of CSC-associated proteins with altered expression of epithelial-mesenchymal transition (EMT) markers. ICG-001 also inhibited C666-1 tumor sphere formation, accompanied with reduced SOX2hi/CD44hi CSC-like population. ICG-001 was also found to restore the expression of a tumor suppressive microRNA-145 (miR-145). Ectopic expression of miR-145 effectively repressed SOX2 protein expression and inhibited tumor sphere formation. Combination of ICG-001 with cisplatin synergistically suppressed in vitro growth of C666-1 cells and significantly suppressed growth of NPC xenografts. These results suggested that therapeutically targeting of the CBP/β-catenin signaling pathway with ICG-001 can effectively reduce the CSC-like population and combination with cisplatin can effectively suppress the growth of NPC.
BackgroundNasopharyngeal carcinoma (NPC) is an epithelial malignancy strongly associated with Epstein-Barr virus (EBV). AT13387 is a novel heat shock protein 90 (Hsp90) inhibitor, which inhibits the chaperone function of Hsp90 and reduces expression of Hsp90-dependent client oncoproteins. This study aimed to evaluate both the in vitro and in vivo antitumor effects of AT13387 in the EBV-positive NPC cell line C666-1.ResultsOur results showed that AT13387 inhibited C666-1 cell growth and induced cellular senescence with the downregulation of multiple Hsp90 client oncoproteins EGFR, AKT, CDK4, and restored the protein expression of negative cell cycle regulator p27. We also studied the ability of AT13387 to restore p27 expression by downregulation of AKT and the p27 ubiquitin mediator, Skp2, using AKT inhibitor and Skp2 siRNA. In the functional study, AT13387 inhibited cell migration with downregulation of a cell migration regulator, HDAC6, and increased the acetylation and stabilization of α-tubulin. We also examined the effect of AT13387 on putative cancer stem cells (CSC) by 3-D tumor sphere formation assay. AT13387 effectively reduced both the number and size of C666-1 tumor spheres with decreased expression of NPC CSC-like markers CD44 and SOX2. In the in vivo study, AT13387 significantly suppressed tumor formation in C666-1 NPC xenografts.ConclusionAT13387 suppressed cell growth, cell migration, tumor sphere formation and induced cellular senescence on EBV-positive NPC cell line C666-1. Also, the antitumor effect of AT13387 was demonstrated in an in vivo model. This study provided experimental evidence for the preclinical value of using AT13387 as an effective antitumor agent in treatment of NPC.
The association of Matrix metalloproteinase-19 (MMP19) in the development of nasopharyngeal carcinoma (NPC) was identified from differential gene profiling, which showed MMP19 was one of the candidate genes down-regulated in the NPC cell lines. In this study, quantitative RT-PCR and Western blot analysis showed MMP19 was down-regulated in all seven NPC cell lines. By tissue microarray immunohistochemical staining, MMP19 appears down-regulated in 69.7% of primary NPC specimens. Allelic deletion and promoter hypermethylation contribute to MMP19 down-regulation. We also clearly demonstrate that the catalytic activity of MMP19 plays an important role in antitumor and antiangiogenesis activities in comparative studies of the wild-type and the catalytically inactive mutant MMP19. In the in vivo tumorigenicity assay, only the wild-type (WT), but not mutant, MMP19 transfectants suppress tumor formation in nude mice. In the in vitro colony formation assay, WT MMP19 dramatically reduces colony-forming ability of NPC cell lines, when compared to the inactive mutant. In the tube formation assay of human umbilical vein endothelial cells and human microvascular endothelial cells (HMEC-1), secreted WT MMP19, but not mutant MMP19, induces reduction of tube-forming ability in endothelial cells with decreased vascular endothelial growth factor (VEGF) in conditioned media detected by enzyme-linked immunosorbent assay (ELISA). The anti-angiogenic activity of WT MMP19 is correlated with suppression of tumor formation. These results now clearly show that catalytic activity of MMP19 is essential for its tumor suppressive and anti-angiogenic functions in NPC.Nasopharyngeal carcinoma (NPC) is a malignancy arising from the epithelial cells of the nasopharynx. This cancer has a unique racial and geographic distribution with a high incidence in Southern China and Southeast Asia among the Southern Chinese population. 1 The etiology of NPC is believed to be multifactorial including dietary and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.