Zearalenone (ZEA), a mycotoxin produced in the genus Fusarium, binds to estrogen receptors (ER) and is therefore regarded as an endocrine disruptor. ZEA has also been found to modulate the proliferation and apoptosis of prostate cancer cells in a dose-dependent manner. This study evaluates whether the effect of a low dose of ZEA (0.1 and 0.001 nM) on the invasion and migration of prostate cancer cell line PC3 is associated with ERs expression. The invasion and migration was evaluated by modified Boyden chamber assay, scratch assay, gelatin zymography, Real Time qPCR (RTqPCR) and Western blot. The involvement of ERs was evaluated with the selective ER antagonists: estrogen receptor α (ERα) antagonist 1,3-bis (4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride (MPP) and estrogen receptor β (ERβ) antagonist 4-[2–phenyl-5,7–bis (trifluoromethyl) pyrazolo [1,5-a]-pyrimidin-3-yl] phenol (PHTPP). ZEA was found to modulate cell motility dependent on estrogen receptors, particularly ERα. Increased cell migration and invasion were associated with increased MMP-2 and MMP-9 activity as well as the up-regulation of the EMT-associated genes vimentin (VIM), zinc finger E-box-binding homeobox 1/2 (ZEB1/2) and transforming growth factor β 1 (TGFβ1). In conclusion, ZEA might modulate the invasiveness of prostate cancer cells dependently on ERα expression.
Angiotensin 1–7 (Ang1–7) is an endogenous bioactive component of the renin-angiotensin system (RAS). In addition to its cardiovascular properties, its anti-proliferative and anti-angiogenic traits are believed to play important roles in carcinogenesis. The present study examines the influence of Ang1–7 on processes associated with development and progression of prostate cancer cells. Our findings indicate that while Ang1–7 (1 nM; 48 h) can effectively reduce cell proliferation in DU-145, it can induce a significant decrease in the expression of MKI67 in LNCaP. In both cell lines we also observed a reduction in colony size in soft agar assay. A various changes in gene expression were noted after exposure to Ang1–7: those of anti- and pro-apoptotic agents and the NF-kB family of transcription factors, as well as mesenchymal cell markers and vascular endothelial growth factor A (VEGFA). In addition, Ang1–7 was found to modulate cell adhesion and matrix metallopeptidase (MMP) activity. Changes were also observed in the levels of angiotensin receptors and sex steroid hormone receptors. Ang1–7 reduced the levels of estrogen receptor alpha gene (ESR1) and increased the expression of estrogen receptor beta gene (ESR2) in all prostate cancer cells; it also up-regulated androgen receptor (AR) expression in androgen-sensitive cells but contradictory effect was observed in androgen- irresponsive cell lines. In summary, the results confirm the existence of complex network between the various elements of the local RAS and the molecular and cellular mechanisms of prostate cancerogenesis. The response of cancer cells to Ang1–7 appears to vary dependently on the dose and time of incubation as well as the aggressiveness and the hormonal status of cells.
Deoxynivalenol (DON), known as vomitoxin, a type B trichothecene, is produced by Fusarium. DON frequently contaminates cereal grains such as wheat, maize, oats, barley, rye, and rice. At the molecular level, it induces ribosomal stress, inflammation and apoptosis in eukaryotic cells. Our findings indicate that DON modulates the viability of prostate cancer (PCa) cells and that the response to a single high dose of DON is dependent on the androgen-sensitivity of cells. DON appears to increase reactive oxygen species (ROS) production in cells, induces DNA damage, and triggers apoptosis. The effects of DON application in PCa cells are influenced by the mitogen-activated protein kinase (MAPK) and NFΚB- HIF-1α signaling pathways. Our results indicate that p53 is a crucial factor in DON-associated apoptosis in PCa cells. Taken together, our findings show that a single exposure to high concentrations of DON (2–5 µM) modulates the progression of PCa.
Deoxynivalenol (DON) is a type B trichothecene, produced by the Fusarium species. Exposure to DON might cause disruptive effects such as reduced weight gain, neuroendocrine changes and immune modulation in animals (rats, dogs, pigs). There is huge concern that similar effects can be observed in humans. DON is a potential regulator of intracellular steroidogenesis. It is also possible that DON will be involved in the regulation of miRNAs connected with steroidogenesis. This review summarizes the latest knowledge about the influence of DON on steroidogenesis and human hormonal balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.