Growing evidence shows that C1q modulates the growth and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because C1q regulates both innate and acquired immune responses, we postulated that C1q modulates the transition from monocytes to DCs, i.e. the interface between innate and acquired immunity. Human peripheral blood monocytes cultured with soluble C1q and DC growth factors (GM-CSF + IL-4) failed to down-regulate monocyte-associated (CD14, CD16) and up-regulate DC-associated (CD83, CD86) markers. Impaired DC differentiation was not due to apoptosis; further analysis revealed the development of CD14 hi CD11c hi CD16 +/− cells that have previously been associated with both innate and acquired immunity. Monocyte-DC precursors expressed gC1qR, the receptor for globular heads of C1q, from the outset, while cC1qR, the receptor for the collagen tails of C1q, was expressed at low levels. Notably, the binding pattern of monoclonal antibodies specific to the globular heads of C1q indicated that C1q is bound to monocytes via globular heads, presumably through gC1qR. Moreover, gC1qR levels decreased, while cC1qR levels were dramatically amplified as monocytes differentiated into immature DC. Thus, specific C1q/C1q receptor (R) interactions may control the transition from the monocyte state (innate immunity) toward the professional antigen-presenting cell state (adaptive immunity).
Research conducted over the past 20 years have helped us unravel not only the hidden structural and functional subtleties of human C1q, but also has catapulted the molecule from a mere recognition unit of the classical pathway to a well-recognized molecular sensor of damage-modified self or non-self antigens. Thus, C1q is involved in a rapidly expanding list of pathological disorders – including autoimmunity, trophoblast migration, preeclampsia, and cancer. The results of two recent reports are provided to underscore the critical role C1q plays in health and disease. First is the observation by Singh et al. (2011) showing that pregnant C1q−/− mice recapitulate the key features of human preeclampsia that correlate with increased fetal death. Treatment of the C1q−/− mice with pravastatin restored trophoblast invasiveness, placental blood flow, and angiogenic balance and, thus, prevented the onset of preeclampsia. Second is the report by Hong et al. (2009) which showed that C1q can induce apoptosis of prostate cancer cells by activating the tumor suppressor molecule WW-domain containing oxydoreductase (WWOX or WOX1) and destabilizing cell adhesion. Downregulation of C1q on the other hand, enhanced prostate hyperplasia and cancer formation due to failure of WOX1 activation. C1q belongs to a family of structurally and functionally related TNF-α-like family of proteins that may have arisen from a common ancestral gene. Therefore C1q not only shares the diverse functions with the tumor necrosis factor family of proteins, but also explains why C1q has retained some of its ancestral “cytokine-like” activities. This review is intended to highlight some of the structural and functional aspects of C1q by underscoring the growing list of its non-traditional functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.