Nemaline myopathy (NM) is a congenital myopathy characterized by muscle weakness and nemaline bodies in affected myofibers. Five NM genes, all encoding components of the sarcomeric thin filament, are known. We report identification of a sixth gene, CFL2, encoding the actin-binding protein muscle cofilin-2, which is mutated in two siblings with congenital myopathy. The proband's muscle contained characteristic nemaline bodies, as well as occasional fibers with minicores, concentric laminated bodies, and areas of F-actin accumulation. Her affected sister's muscle was reported to exhibit nonspecific myopathic changes. Cofilin-2 levels were significantly lower in the proband's muscle, and the mutant protein was less soluble when expressed in Escherichia coli, suggesting that deficiency of cofilin-2 may result in reduced depolymerization of actin filaments, causing their accumulation in nemaline bodies, minicores, and, possibly, concentric laminated bodies.
Skeletal muscle differentiation is a complex, highly coordinated process that relies on precise temporal gene expression patterns. To better understand this cascade of transcriptional events, we used expression profiling to analyze gene expression in a 12-day time course of differentiating C2C12 myoblasts. Cluster analysis specific for time-ordered microarray experiments classified 2895 genes and ESTs with variable expression levels between proliferating and differentiating cells into 22 clusters with distinct expression patterns during myogenesis. Expression patterns for several known and novel genes were independently confirmed by real-time quantitative RT-PCR and/or Western blotting and immunofluorescence. MyoD and MEF family members exhibited unique expression kinetics that were highly coordinated with cell-cycle withdrawal regulators. Among genes with peak expression levels during cell cycle withdrawal were Vcam1, Itgb3, Itga5, Vcl, as well as Ptger4, a gene not previously associated with the process of myogenesis. One interesting uncharacterized transcript that is highly induced during myogenesis encodes several immunoglobulin repeats with sequence similarity to titin, a large sarcomeric protein. These data sets identify many additional uncharacterized transcripts that may play important functions in muscle cell proliferation and differentiation and provide a baseline for comparison with C2C12 cells expressing various mutant genes involved in myopathic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.