This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention.
The aim of the study was to determine the cytotoxic concentrations and incubation times of the commonly used dental adhesive system OptiBond Solo Plus in its non-polymerized form, and to test how it relates to oxidative stress by determining the reduced and oxidized glutathione (GSH and GSSG) levels as well as to study its influence on cell number and the expression of selected sulfur enzymes, with particular emphasis on cystathionine γ-lyase (CTH) and 3-mercaptopyruvate (MPST), sulfurtransferase. All investigations were conducted on an in vitro model of human fibroblast cell line Hs27. Changes in cellular plasma membrane integrity were measured by the LDH test. The expression levels were determined by RT-PCR and Western blot protocols. Changes in cell number were visualized using crystal violet staining. The RP-HPLC method was used to determine the GSH and GSSG levels. Reduced cell number was shown for all tested concentrations and times. Changes in the expression on the mRNA and protein level were demonstrated for CTH and MPST enzymes upon exposure to the tested range of OptiBond concentrations. Levels of low-molecular sulfur compounds of reduced and oxidized glutathione were also established. Cytotoxic effect of OptiBond Solo Plus may be connected with the changes of MPST and CTH sulfur enzymes in the human fibroblast Hs27 cell line. The elevated levels of these enzymes could possibly show the antioxidant response to this dental adhesive system. OptiBond Solo Plus in vitro results should be taken into consideration for further in vivo tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.