With the development of effective deep learning algorithms, it became possible to achieve high accuracy when conducting remote sensing analyses on very high-resolution images (VHRS), especially in the context of building detection and classification. In this article, in order to improve the accuracy of building detection and classification, we propose a Faster Edge Region Convolutional Neural Networks (FER-CNN) algorithm. This proposed algorithm is trained and evaluated on different datasets. In addition, we propose a new method to improve the detection of the boundaries of detected buildings. The results of our algorithm are compared with those of other methods, such as classical Faster Region Convolution Neural Network (Faster R-CNN) with the original VGG16 and the Single-Shot Multibox Detector (SSD). The experimental results show that our methods make it possible to obtain an average detection accuracy of 97.5% with a false positive classification rate of 8.4%. An additional advantage of our method is better resistance to shadows, which is a very common issue for satellite images of urban areas. Future research will include designing and training the neural network to detect small buildings, as well as irregularly shaped buildings that are partially obscured by shadows or other occlusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.