Weaning is a critical period in farming, and therefore, searching for health-promoting feed additives of natural origin is necessary. This study aimed to evaluate the effects of full-fat H. illucens larvae meal (HI) and astaxanthin (AST) supplementation on the growth performance and health status of weaned pigs. The experiment was carried out on 48 pigs (8.7 kg) divided into six groups: I—control; II—2.5% HI; III—5% HI; IV—2.5% HI and AST; V—5% HI and AST; VI—AST. The experiment lasted from the 35th to 70th day of age, and animals were fed ad libitum. The results obtained indicate that HI meal and astaxanthin had no effect on feed intake and utilization, weight gain, or organ weight. Additionally, blood parameters remained within the norms. It seems that astaxanthin supports the inhibition of oxidative stress, which became apparent in the case of some red blood cell parameters. The 2.5% HI and AST supplementation can reduce the susceptibility of pork fat to oxidation (lower adipose tissue TBARS). However, 5% HI in feed was not beneficial because of the adverse changes in some red cell indices, and it should be combined with the antioxidant AST to improve these indices.
The aim of this study was to determine the effect of an increased mono-and disaccharide (MD) intake on selected functions and structure of the gastrointestinal tract (GIT), and selected blood parameters in Reeves's muntjac (Muntiacus reevesi), a small browsing ruminant. Eighteen male muntjacs were fed diets consisting of lucerne (ad libitum), a high fibre pellet (100 g/day) and wheat bran (30 g/day) without (MD0) or with addition of 10 or 20 g of glucose, fructose and sucrose mixture/day (MD10 and MD20, respectively) for 14 days. MD dosages were set to increase intake of these saccharides by 25% and 50% relative to MD0, which resulted in a range of water-soluble carbohydrate content in the consumed dry matter from 7% to 12%. Compared to MD0 animals, MD20 animals had a lower dry matter intake, a higher MD concentrations in the reticulorumen (RR), abomasal and small intestinal digesta, higher ruminal butyrate concentration, higher SGLT1 expression in the epithelium of proximal jejunum, higher plasma glucose, lower RR tissue weight but greater caecal tissue weight (p ≤ 0.05), and had or tended to have shorter papillae and lower mucosa surface area in the Atrium ruminis (by 44%; p = 0.02 and p = 0.10, respectively); MD10 animals tended to have higher MD concentrations in the abomasal and small intestinal digesta (p ≤ 0.10), and a higher amylolytic activity (p = 0.02) as well as a tendency to lower xylanolytic activity in the RR digesta (p = 0.06). MD supplementation did not affect ruminal pH. In conclusion, low to moderate increase of MD intake increased MD concentrations in the RR, abomasal and intestinal digesta, and SGLT1 expression in intestinal epithelium, suggesting incomplete fermentation of those saccharides in the RR. MD supplementation dose-dependently affects structure of GIT in Reeves's muntjac.
Antimicrobial peptides (AMPs) are the focus of this manuscript, as bioconservative molecules that constitute a major defense mechanism in many organisms. Various antimicrobial peptides have been isolated and identified, but AMPs derived from Hermetia illucens (HI) will be the focus of this review. The review focuses mainly on cecropins, defensins, and attacins. Hermetia illucens is a remarkable organism adapted to life in a diverse, often highly polluted environment, and its resilience is largely attributed to AMPs. AMPs are active against many bacterial and fungal species and also act to induce the osmotic lysis of protozoa. They attack pathogenic microorganisms without damaging host cells in the process. Given the increasing antibiotic resistance of many bacterial strains in animal production, AMPs appear to be a tempting alternative as substances that limit and inhibit the growth and development of pathogens, as well as an option in veterinary medicine as potential substitutes for antibiotics, the administration of which must be limited in the European Union. The AMP content of HI larvae extracts, which determines their activity, depends on the larval diet and the solvent used. This review presents in vitro studies on the effects of AMPs from Hermetia illucens on microorganisms and in vivo studies on the potential of HI larvae meal as a feed supplement.
This study was carried out on 96 caged Bovans Brown laying hens at an initial age of 25 weeks, which were randomly assigned to four experimental groups of 12 replicates (cages) of two hens per cage. The control group hens received a diet containing 20% soybean meal (SBM), without Hermetia illucens larvae meal (HIM) content. The hens in the experimental groups received a diet containing defatted HIM at levels of 5, 10, and 15% (HIM 5%, HIM 10%, and HIM 15%, respectively), at the expense of a proportionally decreasing content of SBM. During the 12-week experiment, the laying performance, biochemical and redox blood indices, and liver condition were examined. The cholesterol level, fatty acid profile, and malondialdehyde content in egg yolks were also evaluated to determine the dietary quality of the eggs. The inclusion of HIM at any level in the diet did not affect the laying performance parameters (p > 0.05). Increased serum Ca and uric acid contents were observed. There was no effect on the redox indices in plasma. The number of hepatocytes was decreased in the HIM-fed groups. The level of cholesterol in yolks was reduced, and the fatty acid profile showed significant changes. Despite the high lauric acid content in the H. illucens meal, it was present in trace amounts in yolks. In the HIM-fed groups, the levels of saturated fatty acids increased significantly, whereas those of unsaturated fatty acids decreased in the yolks in the same groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.