Prolonged or excessive microglial activation may lead to disturbances in the resolution of inflammation (RoI). The importance of specialized pro-resolving lipid mediators (SPMs) in RoI has been highlighted. Among them, lipoxins (LXA4) and aspirin-triggered lipoxin A4 (AT-LXA4) mediate beneficial responses through the activation of N-formyl peptide receptor-2 (FPR2). We aimed to shed more light on the time-dependent protective and anti-inflammatory impact of the endogenous SPMs, LXA4, and AT-LXA4, and of a new synthetic FPR2 agonist MR-39, in lipopolysaccharide (LPS)-exposed rat microglial cells. Our results showed that LXA4, AT-LXA4, and MR-39 exhibit a protective and pro-resolving potential in LPS-stimulated microglia, even if marked differences were apparent regarding the time dependency and efficacy of inhibiting particular biomarkers. The LXA4 action was found mainly after 3 h of LPS stimulation, and the AT-LXA4 effect was varied in time, while MR-39′s effect was mainly observed after 24 h of stimulation by endotoxin. MR-39 was the only FPR2 ligand that attenuated LPS-evoked changes in the mitochondrial membrane potential and diminished the ROS and NO release. Moreover, the LPS-induced alterations in the microglial phenotype were modulated by LXA4, AT-LXA4, and MR-39. The anti-inflammatory effect of MR-39 on the IL-1β release was mediated through FPR2. All tested ligands inhibited TNF-α production, while AT-LXA4 and MR-39 also diminished IL-6 levels in LPS-stimulated microglia. The favorable action of LXA4 and MR-39 was mediated through the inhibition of ERK1/2 phosphorylation. AT-LXA4 and MR39 diminished the phosphorylation of the transcription factor NF-κB, while AT-LXA4 also affected p38 kinase phosphorylation. Our results suggest that new pro-resolving synthetic mediators can represent an attractive treatment option for the enhancement of RoI, and that FPR2 can provide a perspective as a target in immune-related brain disorders.
Formyl peptide receptors (FPRs) belong to the family of seven-transmembrane G protein-coupled receptors. Among them, FPR2 is a low affinity receptor for N-formyl peptides and is considered the most promiscuous member of FPRs. FPR2 is able to recognize a broad variety of endogenous or exogenous ligands, ranging from lipid to proteins and peptides, including non-formylated peptides. Due to this property FPR2 has the ability to modulate both pro- and anti-inflammatory response, depending on the nature of the bound agonist and on the different recognition sites of the receptor. Thus, FPR2 takes part not only in the proinflammatory response but also in the resolution of inflammation (RoI) processes. Recent data have indicated that the malfunction of RoI may be the background for some central nervous system (CNS) disorders. Therefore, much interest is focused on endogenous molecules called specialized pro-resolving mediators (SPMs), as well as on new synthetic FPR2 agonists, which kick-start the resolution of inflammation (RoI) and modulate its course. Here, we shed some light on the general characteristics of the FPR family in humans and in the experimental animals. Moreover, we present a guide to understanding the “double faced” action of FPR2 activation in the context of immune-related diseases of the CNS.
Accumulating evidence indicates a pivotal role for chronic inflammatory processes in the pathogenesis of neurodegenerative and psychiatric disorders. G protein-coupled formyl peptide receptor 2 (FPR2) mediates pro-inflammatory or anti-/pro-resolving effects upon stimulation with biased agonists. We aimed to evaluate the effects of a new FPR2 ureidopropanamide agonist, compound MR-39, on neuroinflammatory processes in organotypic hippocampal cultures (OHCs) derived from control (WT) and knockout FPR2−/− mice (KO) exposed to bacterial endotoxin (lipopolysaccharide; LPS). Higher LPS-induced cytokine expression and basal release were observed in KO FPR2 cultures than in WT cultures, suggesting that a lack of FPR2 enhances the OHCs response to inflammatory stimuli. Pretreatment with MR-39 abolished some of the LPS-induced changes in the expression of genes related to the M1/M2 phenotypes (including Il-1β, Il-6, Arg1, Il-4, Cd74, Fizz and Cx3cr1) and TNF-α, IL-1β and IL-4 release in tissue derived from WT but not KO mice. Receptor specificity was confirmed by adding the FPR2 antagonist WRW4, which abolished the abovementioned effects of MR-39. Further biochemical data showed an increase in the phospho-p65/total p65 ratio after LPS stimulation in hippocampal tissues from both WT and KO mice, and MR-39 only reversed this effect on WT OHCs. LPS also increased TRAF6 levels, which are critical for the TLR4-mediated NF-κB pro-inflammatory responses. MR-39 attenuated the LPS-evoked increase in the levels of the NLRP3 and caspase-1 proteins in WT but not KO hippocampal cultures. Since NLRP3 may be involved in the pyroptosis, a lytic type of programmed cell death in which the main role is played by Gasdermin D (GSDMD), we examined the effects of LPS and/or MR-39 on the GSDMD protein level. LPS only increased GSDMD production in the WT tissues, and this effect was ameliorated by MR-39. Collectively, this study indicates that the new FPR2 agonist efficiently abrogates LPS-induced neuroinflammation in an ex vivo model, as evidenced by a decrease in pro-inflammatory cytokine expression and release as well as the downregulation of NLRP3 inflammasome-related pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.