BACKGROUND The degree of myocardial injury, as reflected by troponin elevation, and associated outcomes among U.S. hospitalized patients with coronavirus disease-2019 (COVID-19) are unknown. OBJECTIVES The purpose of this study was to describe the degree of myocardial injury and associated outcomes in a large hospitalized cohort with laboratory-confirmed COVID-19.
Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine, and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes.
STRUCTURED ABSTRACT (250 words, current: 250)Background: The degree of myocardial injury, reflected by troponin elevation, and associated outcomes among hospitalized patients with Coronavirus Disease in the US are unknown.Objectives: To describe the degree of myocardial injury and associated outcomes in a large hospitalized cohort with laboratory-confirmed COVID-19. Methods:Patients with COVID-19 admitted to one of five Mount Sinai Health System hospitals in New York City between February 27th and April 12th, 2020 with troponin-I (normal value <0.03ng/mL) measured within 24 hours of admission were included (n=2,736). Demographics, medical history, admission labs, and outcomes were captured from the hospitals' EHR. Results:The median age was 66.4 years, with 59.6% men. Cardiovascular disease (CVD) including coronary artery disease, atrial fibrillation, and heart failure, was more prevalent in patients with higher troponin concentrations, as were hypertension and diabetes. A total of 506 (18.5%) patients died during hospitalization. Even small amounts of myocardial injury (e.g. troponin I 0.03-0.09ng/mL, n=455, 16.6%) were associated with death (adjusted HR: 1.77, 95% CI 1.39-2.26; P<0.001) while greater amounts (e.g. troponin I>0.09 ng/dL, n=530, 19.4%) were associated with more pronounced risk (adjusted HR 3.23, 95% CI 2.59-4.02). Conclusions:Myocardial injury is prevalent among patients hospitalized with COVID-19, and is associated with higher risk of mortality. Patients with CVD are more likely to have myocardial injury than patients without CVD. Troponin elevation likely reflects non-ischemic or secondary myocardial injury. Unstructured Abstract (100/100 words): Myocardial injury reflected as elevated troponin in Coronavirus Disease (COVID-19) is not well characterized among patients in the United States. We describe the prevalence and impact of myocardial injury among hospitalized patients with confirmed COVID-19 and troponin-I measurements within 24 hours of admission (N=2,736). Elevated troponin concentrations (normal <0.03ng/mL) were commonly observed in patients hospitalized with COVID-19, most often present at low levels, and associated with increased risk of death. Patients with cardiovascular disease (CVD) or risk factors for CVD were more likely to have myocardial injury. Troponin elevation likely reflects non-ischemic or secondary myocardial injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.