Developing rigorous ecological models is a fundamental goal of conservation biologists seeking to forecast biotic responses to climate change. A limitation of many models is they are amechanistic and lack integration of behavior, which is fundamental to animal biology. We integrated biophysical and agent-based models (ABM) to examine how behavior could affect the sensitivity of Plethodontid salamander activity time to climate. Specifically, our model used a temperature differential to stimulate plant climbing, a widely observed behavior among salamanders, which would allow salamanders to reduce body temperatures and associated dehydration rates. Consistent with expectations, predicted activity time was positively correlated with precipitation. The model showed that climbing plants increased activity time in drier conditions, particularly for smaller salamanders. The predicted importance of climbing behavior, a form of behavioral plasticity, was highly sensitive to assumptions about the threshold of water loss an individual was willing to tolerate. Because activity time is associated with fitness, increased activity time as a consequence of climbing behavior could moderate salamander sensitivity to shifts in weather patterns. Our results demonstrate the potential and importance of integrating behaviors into ecophysiological models when evaluating a species' potential sensitivity to climate.
Critical habitat for many species is often limited to occupied localities. For rare and cryptic species, or those lacking sufficient data, occupied habitats may go unrecognized, potentially hindering species recovery. Proposed critical habitat for the aquatic Jollyville Plateau salamander (Eurycea tonkawae) and two sister species were delineated based on the assumption that surface habitat is restricted to springs and excludes intervening stream reaches. To test this assumption, we performed two studies to understand aspects of individual, population, and metapopulation ecology of E. tonkawae. First, we examined movement and population demographics using capture-recapture along a spring-influenced stream reach. We then extended our investigation of stream habitat use with a study of occupancy and habitat dynamics in multiple headwater streams. Indications of extensive stream channel use based on capture-recapture results included frequent movements of >15 m, and high juvenile abundance downstream of the spring. Initial occupancy of E. tonkawae was associated with shallow depths, maidenhair fern presence and low temperature variation (indicative of groundwater influence), although many occupied sites were far from known springs. Additionally, previously dry sites were three times more likely to be colonized than wet sites. Our results indicate extensive use of stream habitats, including intermittent ones, by E. tonkawae. These areas may be important for maintaining population connectivity or even as primary habitat patches. Restricting critical habitat to occupied sites will result in a mismatch with actual habitat use, particularly when assumptions of habitat use are untested, thus limiting the potential for recovery.
Differences within a biological system are ubiquitous, creating variation in nature. Variation underlies all evolutionary processes and allows persistence and resilience in changing environments; thus, uncovering the drivers of variation is critical. The growing recognition that variation is central to biology presents a timely opportunity for determining unifying principles that drive variation across biological levels of organization. Currently, most studies that consider variation are focused at a single biological level and not integrated into a broader perspective. Here we explain what variation is and how it can be measured. We then discuss the importance of variation in natural systems, and briefly describe the biological research that has focused on variation. We outline some of the barriers and solutions to studying variation and its drivers in biological systems. Finally, we detail the challenges and opportunities that may arise when studying the drivers of variation due to the multi-level nature of biological systems. Examining the drivers of variation will lead to a reintegration of biology. It will further forge interdisciplinary collaborations and open opportunities for training diverse quantitative biologists. We anticipate that these insights will inspire new questions and new analytic tools to study the fundamental questions of what drives variation in biological systems and how variation has shaped life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.