Summary In the present study biochemical polymorphisms were investigated in blood of different race hounds and compared to those of other dog breeds. Twenty‐three proteins were separated electrophoretically in starch gel and Polyacrylamide gel respectively. For 9 proteins genetic variants could be assured: postalbumin‐1 (PA‐1), postalbumin‐3 (PA‐3), transferrin (TRF), plasma esterase (ES), leucine arylaminopeptidase (LAP), haptoglobin (HP), glucose phosphate isomerase (GPI), superoxide dismutase (SOD), albumin (ALB). The already known HP polymorphism was analyzed and described in more detail. In addition, a sex independent variation was found for the GPD.
Cardiorespiratory autonomic control is in tight interaction with an intracardiac neural network modulating sinus node function. To gain novel mechanistical insights and to investigate possible novel targets concerning the treatment of inadequate sinus tachycardia, we aimed to characterize functionally and topographically the right atrial neural network modulating sinus node function. In 16 sheep 3-dimensional electro-anatomical mapping of the right atrium was performed. In five animals additionally magnetically steered remote navigation was used. Selective stimulation of nerve fibers was conducted by applying high frequency (200 Hz) electrical impulses within the atrial refractory period. Histological analysis of whole heart preparations by acetylcholinesterase staining was performed and compared to the acquired neuroanatomical mapping.We found that neural stimulation in the cranial part of the right atrium, within a perimeter around the sinus node area, elicited predominantly shortening of the sinus cycle length of -20.3 ± 10.1 % (n = 80, P < 0.05). Along the course of the crista terminalis atrial premature beats (n = 117) and atrial fibrillation (n = 123) could be induced. Catheter stability was excellent during remote catheter navigation. Histological work-up (n = 4) was in accord with the distribution of neurostimulation sites. Ganglions were mainly innervated by the dorsal right-atrial subplexus, with substantial additional input from the ventral right atrial subplexus. In conclusion, our findings suggest a functional and topographic concordance of right atrial neural structures inducing sinus tachycardia. This might open up new avenues in the treatment of heart rate related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.