Oligodendrocytes in the mammalian brain are continuously generated from NG2 cells throughout postnatal life. However it has remained unclear when the decision of NG2 cells to self-renew or differentiate into oligodendrocytes occurs after cell division. Using a combination of in vivo and ex vivo imaging and fate analysis of proliferated NG2 cells in fixed tissue, we demonstrate that in the postnatal developing mouse brain, the majority of divided NG2 cells differentiate into oligodendrocytes during a critical age-specific temporal window of 3–8 days. Importantly, within this time period, myelin and oligodendrocyte damage accelerated oligodendrocyte differentiation from divided cells, while whisker removal decreased the survival of divided cells in the deprived somatosensory cortex. These findings indicate that during the critical temporal window of plasticity, the fate of divided NG2 cells is sensitive to modulation by external signals.
Glial cells that express the NG2 proteoglycan and the ␣ receptor for PDGF (NG2 cells, polydendrocytes) make up the fifth major cell population that serves as oligodendrocyte progenitor cells in the postnatal CNS. Although recent studies have suggested differences in their proliferation and oligodendrocyte differentiation in gray and white matter, the mechanism underlying the observed differences has been unclear. Using organotypic slice cultures from the forebrain and cerebellum of early postnatal NG2creBAC:ZEG mice, we have compared basal and growth factor-induced proliferation of NG2 cells in gray and white matter. NG2 cells in white matter exhibited greater proliferative response to PDGF AA than those in gray matter. Heterotopic slice transplant and explant cultures suggested intrinsic mechanisms for the differential proliferative response of gray and white matter cells. Additionally, younger white matter NG2 cells showed a more robust proliferative response to PDGF. Basal and PDGF-induced proliferation of gray and white matter NG2 cells was largely dependent on Wnt/-catenin and phosphatidylinositol 3-kinase acting through the mammalian target of rapamycin pathway and not through ERK. These data uncover a previously unrecognized divergence between gray and white matter NG2 cells in the developing brain in their proliferative response to PDGF.
NG2 cells represent a fourth major glial cell population in the mammalian central nervous system (CNS). They arise from discrete germinal zones in mid-gestation embryos and expand to occupy the entire CNS parenchyma. Genetic fate mapping studies have shown that oligodendrocytes and a subpopulation of ventral protoplasmic astrocytes arise from NG2 cells. This review describes recent findings on the fate and fate potential of NG2 cells under physiological and pathological conditions. We discuss age-dependent changes in the fate and fate potential of NG2 cells and possible mechanisms that could be involved in restricting their oligodendrocyte differentiation or fate plasticity.
SUMMARY The brain is a major site of relapse for several cancers, yet deciphering the mechanisms of brain metastasis remains a challenge because of the complexity of the brain tumor microenvironment (TME). To define the molecular landscape of brain metastasis from intact tissue in vivo, we employ an RNA-sequencing-based approach, which leverages the transcriptome of xenografts and distinguishes tumor cell and stromal gene expression with improved sensitivity and accuracy. Our data reveal shifts in epithelial and neuronal-like lineage programs in malignant cells as they adapt to the brain TME and the reciprocal neuroinflammatory response of the stroma. We identify several transcriptional hallmarks of metastasis that are specific to particular regions of the brain, induced across multiple tumor types, and confirmed in syngeneic models and patient biopsies. These data may serve as a resource for exploring mechanisms of TME co-adaptation within, as well as across, different subtypes of brain metastasis.
IL-8 is a chemokine that recruits migrating neutrophils and leukocytes to areas of inflammation. In noninflamed tissue, IL-8 expression is low but can be rapidly induced by proinflammatory cytokines. Typically, inflammation and transient IL-8 expression are beneficial. However, some diseases are characterized by excessive inflammation and high levels of IL-8. Previous studies have shown that IFN-β can inhibit the expression of IL-8, although the mechanism is unknown. Using chromatin immunoprecipitation assays, we define the IL-8 transcriptional program in the absence or presence of inducing stimuli and/or inhibition by IFN-β. In the absence of stimuli, the IL-8 promoter is acetylated but negatively regulated by corepressor proteins. Upon PMA stimulation, the levels of these corepressors are reduced and the promoter is rapidly bound and activated by transcription factors, including NF-κB p65, C/EBPβ, and c-Fos. In addition, RNA polymerase II is recruited to the IL-8 promoter to initiate transcription. However, in the presence of both PMA and IFN-β, there are diminished levels of histone acetylation, reduced levels of transcription factors such as NF-κB p65 and RNA polymerase II, and an increased presence of corepressor proteins such as histone deacetylases 1 and 3 and silencing mediator of retinoic acid and thyroid hormone receptors. IFN-γ-inducible protein-10 and MCP-1 genes, also regulated by NF-κB, are unaffected by IFN-β, and IFN-β does not prevent the activation, nuclear migration, or binding of NF-κB p65 to the κB element of the IFN-γ-inducible protein-10 promoter. As such, these data show that the inhibitory effects of IFN-β are specific to the IL-8 promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.