Human spaceflight is associated with several health-related issues as a result of long-term exposure to microgravity, ionizing radiation, and higher levels of psychological stress. Frequent reported skin problems in space include rashes, itches, and a delayed wound healing. Access to space is restricted by financial and logistical issues; as a consequence, experimental sample sizes are often small, which limits the generalization of the results. Earth-based simulation models can be used to investigate cellular responses as a result of exposure to certain spaceflight stressors. Here, we describe the development of an in vitro model of the simulated spaceflight environment, which we used to investigate the combined effect of simulated microgravity using the random positioning machine (RPM), ionizing radiation, and stress hormones on the wound-healing capacity of human dermal fibroblasts. Fibroblasts were exposed to cortisol, after which they were irradiated with different radiation qualities (including X-rays, protons, carbon ions, and iron ions) followed by exposure to simulated microgravity using a random positioning machine (RPM). Data related to the inflammatory, proliferation, and remodeling phase of wound healing has been collected. Results show that spaceflight stressors can interfere with the wound healing process at any phase. Moreover, several interactions between the different spaceflight stressors were found. This highlights the complexity that needs to be taken into account when studying the effect of spaceflight stressors on certain biological processes and for the aim of countermeasures development.
The spaceflight environment imposes risks for maintaining a healthy skin function as the observed delayed wound healing can contribute to increased risks of infection. To counteract delayed wound healing in space, a better understanding of the fibroblasts’ reaction to altered gravity levels is needed. In this paper, we describe experiments that were carried out at the Large Diameter Centrifuge located in ESA-ESTEC as part of the ESA Academy 2021 Spin Your Thesis! Campaign. We exposed dermal fibroblasts to a set of altered gravity levels, including transitions between simulated microgravity and hypergravity. The addition of the stress hormone cortisol to the cell culture medium was done to account for possible interaction effects of gravity and cortisol exposure. Results show a main impact of cortisol on the secretion of pro-inflammatory cytokines as well as extracellular matrix proteins. Altered gravity mostly induced a delay in cellular migration and changes in mechanosensitive cell structures. Furthermore, 20 × g hypergravity transitions induced changes in nuclear morphology. These findings provide insights into the effect of gravity transitions on the fibroblasts’ function related to wound healing, which may be useful for the development of countermeasures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.