Acute kidney injury (AKI) is a major complication of cardiac bypass surgery. We examined whether levels of liver fatty acid-binding protein (L-FABP) can be an early biomarker for ischemic injury by measuring this protein in the urine of 40 pediatric patients prior to and following cardiopulmonary bypass surgery. AKI was defined as a 50% increase in the serum creatinine from baseline, which was normally not seen until 24-72 h after surgery. Enzyme-linked immunosorbent assay analysis showed increased L-FABP levels (factored for creatinine excretion) of about 94- and 45-fold at 4 and 12 h, respectively, following surgery in the 21 patients who developed AKI with western blot analysis, confirming L-FABP identity. Univariate logistic regression analyses showed that both bypass time and urinary L-FABP were significant independent risk indicators for AKI. After excluding bypass time from the model and using a stepwise multivariate logistic regression analysis, urinary L-FABP levels at 4 h after surgery were an independent risk indicator with the area under the receiver-operating characteristic curve 0.810, sensitivity 0.714, and specificity 0.684 for a 24-fold increase in urinary L-FABP. Our study shows that urinary L-FABP levels represent a sensitive and predictive early biomarker of AKI after cardiac surgery.
We have shown that cisplatin inhibits fatty acid oxidation, and that fibrate treatment ameliorates renal function by preventing the inhibition of fatty acid oxidation and proximal tubule cell death. Urine samples of mice treated with single injection of cisplatin (20 mg/kg body weight) were collected for 3 days and analyzed by 1H-nuclear magnetic resonance (NMR) spectroscopy. In a separate group, urine samples of mice treated with peroxisome proliferator-activated receptor-alpha (PPARalpha) ligand WY were also analyzed by NMR after 2 days of cisplatin exposure. Biochemical analysis of endogenous metabolites was performed in serum, urine, and kidney tissue. Electron microscopic studies were carried out to examine the effects of PPARalpha ligand and cisplatin. Principal component analysis demonstrated the presence of glucose, amino acids, and trichloacetic acid cycle metabolites in the urine after 48 h of cisplatin administration. These metabolic alterations precede changes in serum creatinine. Biochemical studies confirmed the presence of glucosuria, but also demonstrated the accumulation of nonesterified fatty acids, and triglycerides in serum, urine, and kidney tissue, in spite of increased levels of plasma insulin. These metabolic alterations were ameliorated by the use of PPARalpha ligand. Electron microscopic analysis confirmed the protective effect of the fibrate on preventing cisplatin-mediated necrosis of the S3 segment of the proximal tubule. Our study shows that cisplatin-induces a unique NMR metabolic profile in urine of mice that developed acute renal failure, and confirms the protective effect of a fibrate class of PPARalpha ligands. We propose that the injury-induced metabolic profile may be used as a biomarker of cisplatin-induced nephrotoxicity.
Bezafibrate treatment inhibits cisplatin-mediated tubular injury by preventing the activation of various cellular mechanisms that lead to proximal tubule cell death. These findings support our previous observations where the use of fibrates represents a novel strategy to ameliorate proximal tubule cell death in cisplatin-induced acute renal failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.