The objective of the current study was to explore the role of ABCB1 and CYP3A5 genetic polymorphisms in predicting the bioavailability of tacrolimus and the risk for post-transplant diabetes. Artificial neural network (ANN) and logistic regression (LR) models were used to predict the bioavailability of tacrolimus and risk for post-transplant diabetes, respectively. The five-fold cross-validation of ANN model showed good correlation with the experimental data of bioavailability (r2 = 0.93–0.96). Younger age, male gender, optimal body mass index were shown to exhibit lower bioavailability of tacrolimus. ABCB1 1236 C>T and 2677G>T/A showed inverse association while CYP3A5*3 showed a positive association with the bioavailability of tacrolimus. Gender bias was observed in the association with ABCB1 3435 C>T polymorphism. CYP3A5*3 was shown to interact synergistically in increasing the bioavailability in combination with ABCB1 1236 TT or 2677GG genotypes. LR model showed an independent association of ABCB1 2677 G>T/A with post transplant diabetes (OR: 4.83, 95% CI: 1.22–19.03). Multifactor dimensionality reduction analysis (MDR) revealed that synergistic interactions between CYP3A5*3 and ABCB1 2677 G>T/A as the determinants of risk for post-transplant diabetes. To conclude, the ANN and MDR models explore both individual and synergistic effects of variables in modulating the bioavailability of tacrolimus and risk for post-transplant diabetes.
Type 2 diabetes mellitus (T2DM) is a major cause of coronary artery disease (CAD) and is responsible for a great deal of morbidity and mortality in Asian Indians. Several gene polymorphisms have been associated with CAD and T2DM in different ethnic groups. This study will give an insight about the association of two selected candidate gene polymorphisms; paraoxonase1 (PON1) Q192R and apolipoprotein A5 (APOA5) -1131T>C were assessed in a cohort of South Indian patients having CAD with and without T2DM. Polymerase chain reaction-based genotyping of PON1 Q192R (rs662) and APOA5-1131T>C (rs662799) polymorphism was carried out in 520 individuals, including 250 CAD patients (160 with T2DM and 90 without T2DM), 150 T2DM patients with no identified CAD, and 120 normal healthy sex- and age-matched individuals as controls. The PON1 192RR genotype and R allele frequency were elevated in both CAD and T2DM patients when compared with controls; however, only CAD patients with T2DM showed a statistical significance (p=0.023; OR=1.49; 95% CI: 1.04-2.12) when compared with controls. The APOA5-1131CC genotype and C allele also showed a significant association between the CAD+T2DM patients when compared with CAD without T2DM and healthy controls (p=0.012; OR=1.71; 95% CI: 1.0-2.67). An additive interaction between the PON1 RR and APOA5 TC genotypes was identified between the T2DM and CAD patients (p=0.028 and 0.0382, respectively). PON1 and APOA5 polymorphisms may serve as biomarkers in the South Indian population to identify T2DM patients who are at risk of developing CAD.
Altered methylation of exonic CpG plays an important role in the enhanced transcription/expression of IGF2 in breast tumors. Methylation analysis of exon 9 CpG can be used as a biomarker for upregulation of IGF2 in breast tumor tissue and maybe developed as a diagnostic test in future.
Type 2 diabetes mellitus (T2DM) and post-transplant diabetes mellitus (PTDM) share a common pathophysiology. However, diabetes mellitus is a complex disease, and T2DM and PTDM have different etiologies. T2DM is a metabolic disorder, characterized by persistent hyperglycemia, whereas PTDM is a condition of abnormal glucose tolerance, with variable onset after organ transplant. The KCNQ1 and KCNJ11 gene encode potassium channels, which mediate insulin secretion from pancreatic β-cells, and KCN gene mutations are correlated with the development of diabetes. However, no studies have been carried out to establish an association between KCNQ1 and KCNJ11 gene polymorphisms and T2DM and PTDM. Therefore, our study was aimed at the identification of the role of KCNQ1 and KCNJ11 gene polymorphisms associated with T2DM and the risk of developing PTDM in the Asian Indian population. We have carried out a case–control study including 250 patients with T2DM, 250 control subjects, 42 patients with PTDM and 98 subjects with non-PTDM. PCR-RFLP analysis was carried out following the isolation of genomic DNA from EDTA-blood samples. The results of the present study reveal that two single nucleotide polymorphisms (rs2283228 and rs5210, of the KCNQ1 and KCNJ11 genes, respectively) are associated with both T2DM and PTDM. The results of our study suggest a role of KCNQ1 and KCNJ11 gene variants in the increased risk of T2DM and PTDM in the Asian Indian population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.