We present a study of the thermal structure of the hot X-ray emitting atmospheres for a sample of 49 nearby X-ray and optically bright elliptical galaxies using Chandra X-ray data. We focus on the connection between the properties of the hot X-ray emitting gas and the cooler Hα+[NII] emitting phase, and the possible role of the latter in the AGN (Active Galactic Nuclei) feedback cycle. We do not find evident correlations between the Hα+[NII] emission and global properties such as X-ray luminosity, mass of hot gas, and gas mass fraction. We find that the presence of Hα+[NII] emission is more likely in systems with higher densities, lower entropies, shorter cooling times, shallower entropy profiles, lower values of min(t cool /t ff ), and disturbed X-ray morphologies (linked to turbulent motions). However, we see no clear separations in the observables obtained for galaxies with and without optical emission line nebulae. The AGN jet powers of the galaxies with X-ray cavities show hint of a possible weak positive correlation with their Hα+ [NII] luminosities. This correlation and the observed trends in the thermodynamic properties may result from chaotic cold accretion (CCA) powering AGN jets, as seen in some high-resolution hydrodynamic simulations.
Hot gaseous atmospheres that permeate galaxies and extend far beyond their stellar distribution, where they are commonly referred to as the circumgalactic medium (CGM), imprint important information about feedback processes powered by the stellar populations of galaxies and their central supermassive black holes (SMBH). In this work we study the properties of this hot X-ray emitting medium using the IllustrisTNG cosmological simulations. We analyse their mock X-ray spectra, obtained in TNG100 and TNG50, and compare the results with X-ray observations of nearby early-type galaxies. The simulations reproduce the observed X-ray luminosities (L X ) and temperature (T X ) at small (< R e ) and intermediate (< 5R e ) radii reasonably well. We find that the X-ray properties of lower mass galaxies depend on their star formation rates. In particular, in the magnitude range where the star-forming and quenched populations overlap, M K ∼ −24 (M * ∼ 10 10.7 M ), we find that the X-ray luminosities of star-forming galaxies are on average about an order of magnitude higher than those of their quenched counterparts. We show that this diversity in L X is a direct manifestation of the quenching mechanism in the simulations, where the galaxies are quenched due to gas expulsion driven by SMBH kinetic feedback. The observed dichotomy in L X is thus an important observable prediction for the SMBH feedback-based quenching mechanisms implemented in state-of-the-art cosmological simulations. While the current X-ray observations of star forming galaxies are broadly consistent with the predictions of the simulations, the observed samples are small and more decisive tests are expected from the sensitive all-sky X-ray survey with eROSITA.
We present a detailed imaging and spectral analysis of the merging environment of the bimodal cluster A3395 using X-ray and radio observations. X-ray images of the cluster show five main constituents of diffuse emission : A3395 NE, A3395 SW, A3395 NW, A3395 W, and a filament connecting NE to W.X-ray surface-brightness profiles of the cluster did not show any shock fronts in the cluster. Temperature and entropy maps show high temperature and high entropy regions in the W, the NW, the filament and between the NE and SW subclusters. The NE, SW and W components have X-ray bolometric luminosities similar to those of rich clusters of galaxies but have relatively higher temperatures. Similarly, the NW component has X-ray bolometric luminosity similar to that of isolated groups but with much higher temperature. It is, therefore, possible that all the components of the cluster have been heated by the ongoing mergers. The NE subcluster is the most massive and luminous constituent and other subclusters are found to be gravitationally bound to it. The W component is most probably either a clump of gas stripped off the SW due to ram pressure or a separate subcluster that has merged or is merging with the SW. No X-ray cavities are seen associated with the Wide Angle Tailed (WAT) radio source near the centre of the SW subcluster. Minimum energy pressure in the radio emissionpeaks of the WAT galaxy is comparable with the external thermal pressure. The radio spectrum of the WAT suggests a spectral age of ∼10Myr.
We present a study of relations between the masses of the central supermassive black holes (SMBHs) and the atmospheric gas temperatures and luminosities measured within a range of radii between R e and 5R e , for a sample of 47 early-type galaxies observed by the Chandra X-ray Observatory. We report the discovery of a tight correlation between the atmospheric temperatures of the brightest cluster/group galaxies (BCGs) and their central SMBH masses. Furthermore, our hydrostatic analysis reveals an approximately linear correlation between the total masses of BCGs (M tot ) and their central SMBH masses (M BH ). State-of-the-art cosmological simulations show that the SMBH mass could be determined by the binding energy of the halo through radiative feedback during the rapid black hole growth by accretion, while for the most massive galaxies mergers are the chief channel of growth. In the scenario of a simultaneous growth of central SMBHs and their host galaxies through mergers, the observed linear correlation could be a natural consequence of the central limit theorem.
We present new Karl G. Jansky Very Large Array (VLA, 1.5 GHz) radio data for the giant elliptical galaxy IC 4296, supported by archival radio, X-ray (Chandra, XMM-Newton) and optical (SOAR, HST) observations. The galaxy hosts powerful radio jets piercing through the inner hot X-ray emitting atmosphere, depositing most of the energy into the ambient intra-cluster medium (ICM). Whereas the radio surface brightness of the A configuration image is consistent with a Fanaroff-Riley Class I (FR I) system, the D configuration image shows two bright, relative to the central region, large (∼ 160 kpc diameter), well-defined lobes, previously reported by Killeen et al., at a projected distance r 230 kpc. The XMM-Newton image reveals an X-ray cavity associated with one of the radio lobes. The total enthalpy of the radio lobes is ∼ 7 × 10 59 erg and the mechanical power output of the jets is ∼ 10 44 erg s −1 . The jets are mildly curved and possibly re-brightened by the relative motion of the galaxy and the ICM. The lobes display sharp edges, suggesting the presence of bow shocks, which would indicate that they are expanding supersonically. The central entropy and cooling time of the X-ray gas are unusually low and the nucleus hosts a warm Hα+[N ii] nebula and a cold molecular CO disk. Because most of the energy of the jets is deposited far from the nucleus, the atmosphere of the galaxy continues to cool, apparently feeding the central supermassive black hole and powering the jet activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.