Tumor-derived cell lines have served as vital models to advance our understanding of oncogene function and therapeutic responses. Although substantial effort has been made to define the genomic constitution of cancer cell line panels, the transcriptome remains understudied. Here we describe RNA sequencing and single-nucleotide polymorphism (SNP) array analysis of 675 human cancer cell lines. We report comprehensive analyses of transcriptome features including gene expression, mutations, gene fusions and expression of non-human sequences. Of the 2,200 gene fusions catalogued, 1,435 consist of genes not previously found in fusions, providing many leads for further investigation. We combine multiple genome and transcriptome features in a pathway-based approach to enhance prediction of response to targeted therapeutics. Our results provide a valuable resource for studies that use cancer cell lines.
Antibody pharmacokinetics and pharmacodynamics are often governed by biological processes such as binding to antigens and other cognate receptors. Emphasis must also be placed, however, on fundamental physicochemical properties that define antibodies as complex macromolecules, including shape, size, hydrophobicity, and charge. Electrostatic interactions between anionic cell membranes and the predominantly positive surface charge of most antibodies can influence blood concentration and tissue disposition kinetics in a manner that is independent of antigen recognition. In this context, the deliberate modification of antibodies by chemical means has been exploited as a valuable preclinical research tool to investigate the relationship between net molecular charge and biological disposition. Findings from these exploratory investigations may be summarized as follows: (I) shifts in isoelectric point of approximately one pI unit or more can produce measurable changes in tissue distribution and kinetics, (II) increases in net positive charge generally result in increased tissue retention and increased blood clearance, and (III) decreases in net positive charge generally result in decreased tissue retention and increased whole body clearance. Understanding electrostatic interactions between antibodies and biological matrices holds relevance in biotechnology, especially with regard to the development of immunoconjugates. The guiding principles and knowledge gained from preclinical evaluation of chemically modified antibodies will be discussed and placed in the context of therapeutic antibodies that are currently marketed or under development, with a particular emphasis on pharmacokinetic and disposition properties.
Lacking any discernible sequence similarity, interleukin-34 (IL-34) and colony stimulating factor 1 (CSF-1) signal through a common receptor CSF-1R on cells of mononuclear phagocyte lineage. Here, the crystal structure of dimeric IL-34 reveals a helical cytokine fold homologous to CSF-1, and we further show that the complex architecture of IL-34 bound to the N-terminal immunoglobulin domains of CSF-1R is similar to the CSF-1/CSF-1R assembly. However, unique conformational adaptations in the receptor domain geometry and intermolecular interface explain the cross-reactivity of CSF-1R for two such distantly related ligands. The docking adaptations of the IL-34 and CSF-1 quaternary complexes, when compared to the stem cell factor assembly, draw a common evolutionary theme for transmembrane signaling. In addition, the structure of IL-34 engaged by a Fab fragment reveals the mechanism of a neutralizing antibody that can help deconvolute IL-34 from CSF-1 biology, with implications for therapeutic intervention in diseases with myeloid pathogenic mechanisms.
Members of the Bcl-2 protein family control the intrinsic apoptosis pathway. To evaluate the importance of this family in vertebrate development, we investigated it in the zebrafish (Danio rerio). We found that the zebrafish genome encodes structural and functional homologs of most mammalian Bcl-2 family members, including multi-Bcl-2-homology (BH) domain proteins and BH3-only proteins. Apoptosis induction by c-irradiation required zBax1 and zPuma, and could be prevented by overexpression of homologs of prosurvival Bcl-2 family members. Surprisingly, zebrafish Bax2 (zBax2) was homologous to mammalian Bax by sequence and synteny, yet demonstrated functional conservation with human Bak. Morpholino knockdown of both zMcl-1a and zMcl-1b revealed their critical role in early embryonic zebrafish development, and in the modulation of apoptosis activation through the extrinsic pathway. These data indicate substantial functional similarity between zebrafish and mammalian Bcl-2 family members, and establish the zebrafish as a relevant model for studying the intrinsic apoptosis pathway.
Genentech, National Institutes of Health, Francis Family Foundation, Pulmonary Fibrosis Foundation, Nina Ireland Program for Lung Health, US Department of Veterans Affairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.