Real-time network inspection applications face a threat of vulnerability as high-speed networks continue to expand. For companies and ISPs, real-time traffic classification is an issue. The classifier monitor is made up of three modules: Capturing_of_Packets (CoP) and pre-processing, Reconciliation_of_Flow (RoF), and categorization of Machine Learning (ML). Based on parallel processing along with well-defined interfacing of data, the modules are framed, allowing each module to be modified and upgraded separately. The Reconciliation_of_Flow (RoF) mechanism becomes the output bottleneck in this pipeline. In this implementation, an optimal reconciliation process was used, resulting in an average delivery time of 0.62 seconds. In order to verify our method, we equated the results of the AdaBoost Ensemble Learning Algorithm (ABELA), Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbor (KNN), and Flexible Naive Bayes (FNB) in the classification module. The architectural design of the run time CSNTA categorization (flow-based) scheme is presented in this paper.
One of the most critical activities of revealing terrorism-related information is classifying online documents.The internet provides consumers with a variety of useful knowledge, and the volume of web material is increasingly growing. This makes finding potentially hazardous records incredibly difficult. To define the contents, merely extracting keywords from records is inadequate. Many methods have been studied so far to develop automatic document classification systems, they are mainly computational and knowledge-based approaches. due to the complexities of natural languages, these approaches do not provide sufficient results. To fix this shortcoming, we given approach of structure dependent on the WordNet hierarchy and the frequency of n-gram data that employs word similarity. Using four different queries terms from four different regions, this approach was checked for the NY Times articles that were sampled. Our suggested approach successfully removes background words and phrases from the document recognizes connected to terrorism texts, according to experimental findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.