In previous studies, we have shown that heme oxygenase (HO)-2 null [HO-2(Ϫ/Ϫ)] mice exhibit a faulty response to injury; chronic inflammation and massive neovascularization replaced resolution of inflammation and tissue repair. Endothelial cells play an active and essential role in the control of inflammation and the process of angiogenesis. We examined whether HO-2 deletion affects endothelial cell function. Under basal conditions, HO-2(Ϫ/Ϫ) aortic endothelial cells (mAEC) showed a 3-fold higher expression of vascular endothelial growth factor receptor 1 and a marked angiogenic response compared with wild-type (WT) cells. Compared with WT cells, HO-2(Ϫ/Ϫ) mAEC showed a 2-fold reduction in HO activity and marked increases in levels of gp91 phox /NADPH oxidase isoform, superoxide, nuclear factor B activation, and expression of inflammatory cytokines, including interleukin (IL)-1␣ and IL-6. HO-2 deletion transforms endothelial cells from a "normal" to an "activated" phenotype characterized by increases in inflammatory, oxidative, and angiogenic factors. This switch may be the result of reduced HO activity and the associated reduction in the cytoprotective HO products, carbon monoxide and biliverdin/bilirubin, because addition of biliverdin to HO-2(Ϫ/Ϫ) cells attenuated angiogenesis and reduced superoxide production. This transformation underscores the importance of HO-2 in the regulation of endothelial cell homeostasis.The integrity of the vascular endothelium is critical for the maintenance of vascular homeostasis. This layer of cells actively participates in the regulation of vascular tone, blood fluidity, growth of vascular smooth muscle cells, and local inflammation by synthesizing and releasing paracrine factors in response to humoral, mechanical, and neural stimuli. Under normal conditions, the endothelium maintains a vasodilatory, antithrombotic, and anti-inflammatory state. One of the systems that contribute to the maintenance of this state is the heme-heme oxygenase (HO) system. HO is the rate-limiting enzyme in heme catabolism. It cleaves heme into iron, sequestered by ferritin, carbon monoxide (CO), and biliverdin, which is reduced to bilirubin by biliverdin reductase (Abraham and Kappas, 2008). Two isoforms, HO-1 and HO-2, are the major source of HO activity in most tissues. Both are alike in terms of mechanisms of heme oxidation, cofactor and substrate specificity, and susceptibility to inhibition by porphyrins (Maines, 1988;Abraham and Kappas, 2008). They differ in their postulated function; HO-2 functions as the constitutive HO activity contributing to cell homeostasis, whereas HO-1 expression is relatively low in most normal tissues. After injury, however, HO-1 expression is greatly enhanced to play a significant role in cytoprotection (Abraham and Kappas, 2008). The catalytic activity of HO is considered the underlying principle of HO cytoprotective actions. Heme functions as a double-edged sword in that in moderate quantities and when bound to protein, heme forms an essential element for ...
Heme oxygenase (HO-1 and HO-2) represents an intrinsic cytoprotective and anti-inflammatory system based on its ability to modulate leukocyte migration and to inhibit expression of inflammatory cytokines and proteins. HO-2 deletion leads to unresolved corneal inflammation and chronic inflammatory complications including ulceration, perforation and neovascularization. We examined the consequences of HO-2 deletion on hemangiogenesis and lymphangiogenesis in the model of suture-induced inflammatory neovascularization. A 8.0 silk suture was placed at the corneal apex of wild type and HO-2 null mice. Neovascularization was assessed by vital microscopy and quantified by image analysis. Hemangiogenesis and lymphangiogenesis were determined by immunofluorescence staining using anti-CD31 and anti-LYVE-1 antibodies, respectively. Inflammation was quantified by histology and myeloperoxidase activity. The levels of HO-1 expression and inflammatory cytokines were determined by real time PCR and ELISA, respectively. Corneal sutures produced a consistent inflammatory response and a time-dependent neovascularization. The response in HO-2 null mice was associated with a greater increase compared to the wild type in the number of leukocytes (827600±129000 vs. 294500±57510; p<0.05), neovessels measured by vital microscopy (21.91±1.05 vs. 12.77±1.55 mm; p<0.001) 4 days after suture placement. Hemangiogenesis but not lymphangiogenesis was more pronounced in HO-2 null mice compared to wild type mice. Induction of HO-1 in sutured corneas was greatly attenuated in HO-2 null corneas and treatment with biliverdin diminished the exaggerated inflammatory and neovascular response in HO-2 null mice. The demonstration that the inflammatory responses, including expression of proinflammatory proteins, inflammatory cell influx and hemangiogenesis are exaggerated in HO-2 knockout mice strongly supports the notion that the HO system is critical for controlling the inflammatory and neovascular response in the cornea. Hence, pharmacological amplification of this system may constitute a novel therapeutic strategy for the treatment of corneal disorders associated with excessive inflammation and neovascularization.
Increased expression of HO-1 provides a mechanism that modulates inflammation and promotes wound closure; pharmacologic amplification of this system may constitute a novel strategy to treat corneal inflammation while accelerating wound repair after injury.
The aims of the present study were to assess whether sustained HO-1 expression could moderate or prevent diabetes in an animal model of the disease and, if so, to examine the possible mechanisms involved. Our results showed that HO-1 expression and HO activity were upregulated in the pancreas of non-obese diabetic (NOD) mice by the weekly administration of cobalt protoporphyrin (CoPP). Blood glucose levels in CoPPtreated mice decreased to normal, but continuously increased in untreated controls. Beta-cell numbers were preserved in the islets of CoPP-treated mice, whereas no beta cells were found in untreated diabetic mice. The number of CD11c(+) dendritic cells was significantly decreased in the pancreas of CoPP-treated NOD mice, but this effect was reversed by the inhibition of HO activity. Increased levels of HO-1 produced a new pancreatic phenotype, as reflected by increases in phosphorylated AKT, BcL-xL and RSK levels, and decreases in O(2)- and 3-NT levels. These novel findings provide a link between the increase in HO-1 activity, with its concurrent enhanced production of carbon monoxide (CO) and bilirubin, a decrease in infiltrated CD11c(+) dendritic cells and an increase in anti-apoptotic proteins, including RSK and BcL-xL, in the interdiction of the diabetic state.
PURPOSE. The heme oxygenase system (HO-1 and HO-2) represents an intrinsic cytoprotective and anti-inflammatory pathway based on its ability to modulate leukocyte migration and to inhibit the expression of inflammatory cytokines and proteins by its products biliverdin/bilirubin and carbon monoxide. Corneal injury in HO-2 null mice leads to impaired healing and chronic inflammatory complications, including ulceration and neovascularization. The authors examined whether topically administered biliverdin can counteract the effects of HO deficiency in a corneal epithelial injury model. METHODS. HO-2 null mice were treated with biliverdin 1 hour before epithelial injury and twice a day thereafter. Reepithelialization and neovascularization were assessed by fluorescein staining and vital microscopy, respectively, and were quantified by image analysis. Inflammation was quantified by histology and Gr-1-specific immunofluorescence, and oxidative stress was assessed by DHE fluorescence. RESULTS. Treatment with biliverdin accelerated wound closure, inhibited neovascularization and reduced epithelial defects. It also reduced inflammation, as evidenced by a reduction in the appearance of inflammatory cells and the expression levels of inflammatory and oxidant proteins, including KC and NOXs. CONCLUSIONS. The results clearly show that biliverdin, directly or through its metabolism to bilirubin by biliverdin reductase-the expression of which is increased after injury-rescues the aberrant inflammatory phenotype, further underscoring the importance of the HO system in the cornea for the execution of an ordered inflammatory and reparative response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.