Quinoa (Chenopodium quinoa) is a grain-like, genetically diverse, highly complex, nutritious, and stress-tolerant food that has been used in Andean Indigenous cultures for thousands of years. Over the past several decades, numerous nutraceutical and food companies are using quinoa because of its perceived health benefits. Seeds of quinoa have a superb balance of proteins, lipids, carbohydrates, saponins, vitamins, phenolics, minerals, phytoecdysteroids, glycine betaine, and betalains. Quinoa due to its high nutritional protein contents, minerals, secondary metabolites and lack of gluten, is used as the main food source worldwide. In upcoming years, the frequency of extreme events and climatic variations is projected to increase which will have an impact on reliable and safe production of food. Quinoa due to its high nutritional quality and adaptability has been suggested as a good candidate to offer increased food security in a world with increased climatic variations. Quinoa possesses an exceptional ability to grow and adapt in varied and contrasting environments, including drought, saline soil, cold, heat UV-B radiation, and heavy metals. Adaptations in salinity and drought are the most commonly studied stresses in quinoa and their genetic diversity associated with two stresses has been extensively elucidated. Because of the traditional wide-ranging cultivation area of quinoa, different quinoa cultivars are available that are specifically adapted for specific stress and with broad genetic variability. This review will give a brief overview of the various physiological, morphological and metabolic adaptations in response to several abiotic stresses.
Cobalt metal is considered as an essential trace element for the animals. Present investigation was undertaken in the peri-urban area to analyze the cobalt availability in animal food chain by using different indices. Cow, buffalo and sheep samples along with forage and soil samples were collected from the three different sites of District Jhang and analyzed through atomic absorption spectrophotometer. Cobalt values differed in soil samples as 0.315-0.535 mg/kg, forages as 0.127-0.333 mg/kg and animal samples as 0.364-0.504 mg/kg. Analyzed cobalt concentration in soil, forage and animal samples was found to be deficient in concentration with respect to standard limits. Soil showed the minimum cobalt level in Z. mays while maximum concentration was examined in the forage C. decidua samples. All indices examined in this study has values lesser than 1, representing the safer limits of the cobalt concentration in these samples. Enrichment factor (0.071-0.161 mg/kg) showed the highly deficient amount of cobalt enrichment in this area. Bio-concentration factor (0.392-0.883) and pollution load index (0.035-0.059 mg/kg) values were also lesser than 1 explains that plant and soil samples are not contaminated with cobalt metal. The daily intake and health risk index ranged from 0.00019-0.00064 mg/kg/day and 0.0044-0.0150 mg/kg/day respectively. Among the animals, cobalt availability was maximum (0.0150 mg/kg/day) in the buffaloes that grazed on the C. decidua fodder. Results of this study concluded that cobalt containing fertilizers must be applied on the soil and forages. Animal feed derived from the cobalt containing supplements are supplied to the animals, to fulfill the nutritional requirements of livestock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.