BackgroundPTEN (phosphatase and tensin homologue deleted on chromosome ten) is a tumor suppressor gene implicated in a wide variety of human cancers, including glioblastoma. PTEN is a major negative regulator of the PI3K/Akt signaling pathway. Most human gliomas show high levels of activated Akt, whereas less than half of these tumors carry PTEN mutations or homozygous deletions. The unique ability of mesenchymal stem cells to track down tumor cells makes them as potential therapeutic agents. Based on this capability, new therapeutic approaches have been developed using mesenchymal stem cells to cure glioblastoma. However, molecular mechanisms of interactions between glioma cells and stem cells are still unknown.Methodology/Principal FindingsIn order to study the mechanisms by which migration of glioma cells can be inhibited by the upregulation of the PTEN gene, we studied two glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310) alone and in co-culture with human umbilical cord blood-derived mesenchymal stem cells (hUCBSC). Co-cultures of glioma cells showed increased expression of PTEN as evaluated by immunofluorescence and immunoblotting assays. Upregulation of PTEN gene is correlated with the downregulation of many genes including Akt, JUN, MAPK14, PDK2, PI3K, PTK2, RAS and RAF1 as revealed by cDNA microarray analysis. These results have been confirmed by reverse-transcription based PCR analysis of PTEN and Akt genes. Upregulation of PTEN resulted in the inhibition of migration capability of glioma cells under in vitro conditions. Also, wound healing capability of glioma cells was significantly inhibited in co-culture with hUCBSC. Under in vivo conditions, intracranial tumor growth was inhibited by hUCBSC in nude mice. Further, hUCBSC upregulated PTEN and decreased the levels of XIAP and Akt, which are responsible for the inhibition of tumor growth in the mouse brain.Conclusions/SignificanceOur studies indicated that upregulation of PTEN by hUCBSC in glioma cells and in the nude mice tumors downregulated Akt and PI3K signaling pathway molecules. This resulted in the inhibition of migration as well as wound healing property of the glioma cells. Taken together, our results suggest hUCBSC as a therapeutic agent in treating malignant gliomas.
Primary congenital glaucoma (PCG) has been associated with CYP1B1 gene (2p21), with a predominantly autosomal recessive mode of inheritance. Our earlier studies attributed CYP1B1 mutations to only 40% of Indian PCG cases. In this study, we included 72 such PCG cases where CYP1B1 mutations were detected in only 12 patients in heterozygous condition, implying involvement of other gene(s). On screening these patients for mutations in myocilin (MYOC), another glaucoma-associated gene, using denaturing high-performance liquid chromatography followed by sequencing, we identified a patient who was double heterozygous at CYP1B1 (c.1103G>A; Arg368His) and MYOC (c.144G>T; Gln48His) loci, suggesting a digenic mode of inheritance of PCG. In addition, we identified the same MYOC mutation, implicated for primary open angle glaucoma, in three additional PCG patients who did not harbor any mutation in CYP1B1. These observations suggest a possible role of MYOC in PCG, which might be mediated via digenic interaction with CYP1B1 and/or an yet unidentified locus associated with the disease.
Amniotic fluid embolism (AFE) is one of the catastrophic complications of pregnancy in which amniotic fluid, fetal cells, hair, or other debris enters into the maternal pulmonary circulation, causing cardiovascular collapse. Etiology largely remains unknown, but may occur in healthy women during labour, during cesarean section, after abnormal vaginal delivery, or during the second trimester of pregnancy. It may also occur up to 48 hours post-delivery. It can also occur during abortion, after abdominal trauma, and during amnio-infusion. The pathophysiology of AFE is not completely understood. Possible historical cause is that any breach of the barrier between maternal blood and amniotic fluid forces the entry of amniotic fluid into the systemic circulation and results in a physical obstruction of the pulmonary circulation. The presenting signs and symptoms of AFE involve many organ systems. Clinical signs and symptoms are acute dyspnea, cough, hypotension, cyanosis, fetal bradycardia, encephalopathy, acute pulmonary hypertension, coagulopathy etc. Besides basic investigations lung scan, serum tryptase levels, serum levels of C3 and C4 complements, zinc coproporphyrin, serum sialyl Tn etc are helpful in establishing the diagnosis. Treatment is mainly supportive, but exchange transfusion, extracorporeal membrane oxygenation, and uterine artery embolization have been tried from time to time. The maternal prognosis after amniotic fluid embolism is very poor though infant survival rate is around 70%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.