With the continuous expansion of single cell biology, the observation of the behaviour of individual cells over extended durations and with high accuracy has become a problem of central importance. Surprisingly, even for yeast cells that have relatively regular shapes, no solution has been proposed that reaches the high quality required for long-term experiments for segmentation and tracking (S&T) based on brightfield images. Here, we present CellStar, a tool chain designed to achieve good performance in long-term experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a neighbourhood-preserving criterion for tracking, and the use of an iterative approach that incrementally improves S&T quality. A graphical user interface enables manual corrections of S&T errors and their use for the automated correction of other, related errors and for parameter learning. We created a benchmark dataset with manually analysed images and compared CellStar with six other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a website, the Yeast Image Toolkit, with the benchmark and the Evaluation Platform to gather this and additional information provided by others.
Abstract. For models of cell-to-cell communication, with many reactions and species per cell, the computational cost of stochastic simulation soon becomes intractable. Deterministic methods, while computationally more efficient, may fail to contribute reliable approximations for those models. In this paper, we suggest a reduction for models of cell-to-cell communication, based on symmetries of the underlying reaction network.To carry out a stochastic analysis that otherwise comes at an excessive computational cost, we apply a moment closure (MC) approach. We illustrate with a community effect, that allows synchronization of a group of cells in animal development. Comparing the results of stochastic simulation with deterministic and MC approximation, we show the benefits of our approach. The reduction presented here is potentially applicable to a broad range of highly regular systems.
For decades, scientists have sought to elucidate self-organized patterning during development of higher organisms. It has been shown that cell interaction plays a key role in this process. One example is the community effect, an interaction among undifferentiated cells. The community effect allows cell population to forge a common identity, that is, coordinated and sustained tissue-specific gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.