Sorafenib is the first-line chemotherapeutic therapy for advanced hepatocellular carcinoma (HCC). However, sorafenib resistance significantly limits its therapeutic efficacy, and the mechanisms underlying resistance have not been fully clarified. Here we report that a circular RNA, circRNA-SORE (a circular RNA upregulated in sorafenib-resistant HCC cells), plays a significant role in sorafenib resistance in HCC. We found that circRNA-SORE is upregulated in sorafenib-resistant HCC cells and depletion of circRNA-SORE substantially increases the cell-killing ability of sorafenib. Further studies revealed that circRNA-SORE binds the master oncogenic protein YBX1 in the cytoplasm, which prevents YBX1 nuclear interaction with the E3 ubiquitin ligase PRP19 and thus blocks PRP19-mediated YBX1 degradation. Moreover, our in vitro and in vivo results suggest that circRNA-SORE is transported by exosomes to spread sorafenib resistance among HCC cells. Using different HCC mouse models, we demonstrated that silencing circRNA-SORE by injection of siRNA could substantially overcome sorafenib resistance. Our study provides a proof-of-concept demonstration for a potential strategy to overcome sorafenib resistance in HCC patients by targeting circRNA-SORE or YBX1.
Background and aims Accumulating evidence suggests that the primary and acquired resistance of hepatocellular carcinoma (HCC) to sorafenib is mediated by multiple molecular, cellular, and microenvironmental mechanisms. Understanding these mechanisms will enhance the likelihood of effective sorafenib therapy. Methods In vitro and in vivo experiments were performed and clinical samples and online databases were acquired for clinical investigation. Results In this study, we found that a circular RNA, circRNA-SORE, which is up-regulated in sorafenib-resistant HCC cells, was necessary for the maintenance of sorafenib resistance, and that silencing circRNA-SORE substantially increased the efficacy of sorafenib-induced apoptosis. Mechanistic studies determined that circRNA-SORE sequestered miR-103a-2-5p and miR-660-3p by acting as a microRNA sponge, thereby competitively activating the Wnt/β-catenin pathway and inducing sorafenib resistance. The increased level of circRNA-SORE in sorafenib-resistant cells resulted from increased RNA stability. This was caused by an increased level of N6-methyladenosine (m6A) at a specific adenosine in circRNA-SORE. In vivo delivery of circRNA-SORE interfering RNA by local short hairpin RNA lentivirus injection substantially enhanced sorafenib efficacy in animal models. Conclusions This work indicates a novel mechanism for maintaining sorafenib resistance and is a proof-of-concept study for targeting circRNA-SORE in sorafenib-treated HCC patients as a novel pharmaceutical intervention for advanced HCC.
COVID-19 respiratory disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly become a global health issue since it emerged in December 2019. While great global efforts are underway to develop vaccines and to discover or repurpose therapeutic agents for this disease, as of this writing only the nucleoside drug remdesivir has been approved under Emergency Use Authorization to treat COVID-19. The RNA-dependent RNA polymerase (RdRP), a viral enzyme for viral RNA replication in host cells, is one of the most intriguing and promising drug targets for SARS-CoV-2 drug development. Because RdRP is a viral enzyme with no host cell homologs, selective SARS-CoV-2 RdRP inhibitors can be developed that have improved potency and fewer off-target effects against human host proteins and thus are safer and more effective therapeutics for treating COVID-19. This review focuses on biochemical enzyme and cell-based assays for RdRPs that could be used in high-throughput screening to discover new and repurposed drugs against SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.