This article describes the oxidation resistance of laser beam welds made from E110 zirconium alloy with a chromium coating obtained using multi-cathode magnetron sputtering. Oxidation tests of the welded Zr alloy without and with Cr coating were performed in an air atmosphere at 1100 °C for 2–90 min. Then, analysis of their cross-section microstructure in different regions (weld, heat-affected, and bulk zones) was done using optical microscopy. Hardness measurements and three-point bending tests demonstrated the hardening of the Cr-coated welded Zr alloy after the oxidation that is discussed in the article. Brittle fracture behavior was observed for uncoated Zr weld even after a short period of high-temperature oxidation.
The hydrogenation behavior of Cr-coated resistance upset welds (RUW) of E110 zirconium alloy was investigated at 360, 450 and 900 °C and a hydrogen pressure of 2 bar. The deposition of Cr coating, via magnetron sputtering, can decrease the hydrogen absorption rate of an RUW Zr alloy. The activation energy for the hydrogen absorption of Cr-coated specimens (84 kJ/mol) is higher in comparison with uncoated ones (71 kJ/mol), which indicates the deceleration of the hydriding of welded Zr alloys in the case of Cr coating deposition. A Cr coating can limit the formation of radially oriented hydrides and the hardening of RUW specimens at 360 and 450 °C. No significant difference in the hydrogen absorption rate was found at 900 °C. The application of Cr coating deposition to protect resistance-upset-welded Zr alloys in a hydrogen atmosphere is discussed.
The oxidation resistance under LOCA conditions of bilayer Cr/Mo coating deposited on Zr-1Nb zirconium alloy was investigated in this paper. The bilayer Cr (8 μm)/Mo (3 μm) coatings were deposited by magnetron sputtering. Then, oxidation resistance under high-temperature oxidation at 1200–1400 °C in a water steam was studied. The use of a Mo sublayer resulted in limiting Cr–Zr interdiffusion under high-temperature oxidation. It was shown that the Mo barrier sublayer (~3 μm) can provide the protective behavior of the Cr/Mo-coated Zr at 1330 °C in a water steam for at least 720 s. The weight gain of the bilayer Cr/Mo samples was comparable with the monolayer Cr samples after oxidation at 1400 °C. In addition, the analysis of the Cr/Mo-coated Zr alloy oxidation behavior at 1400 °C was carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.