2-(1 H-Pyrazol-1-ylcarbonyl)-2 H-azirines were synthesized by in situ trapping of 2 H-azirine-2-carbonyl chlorides, generated by Fe(II)-catalyzed isomerization of 5-chloroisoxazoles, with pyrazoles. According to DFT calculations, the selectivity of nucleophilic substitution at the carbonyl group of 2 H-azirine-2-carbonyl chloride by a pyrazole nucleophile, which is a mixture of two tautomers, is controlled by thermodynamic factors. 2-(1 H-Pyrazol-1-ylcarbonyl)-2 H-azirines are excellent precursors for the preparation of two other pyrazole-nitrogen heterocycle dyads: 5-(1 H-pyrazol-1-yl)oxazoles by photolysis and 1-(1 H-pyrrol-2-ylcarbonyl)-1 H-pyrazoles by a Ni(II)-catalyzed reaction with 1,3-dicarbonyl compounds. 5-(1 H-Pyrazol-1-yl)oxazoles show strong emission in acetonitrile at 360-410 nm with high quantum yields.
SummaryTheoretical and experimental studies of the reaction of isoxazoles with diazo compounds show that the formation of 2H-1,3-oxazines proceeds via the formation of (3Z)-1-oxa-5-azahexa-1,3,5-trienes which undergo a 6π-cyclization. The stationary points corresponding to the probable reaction intermediates, isoxazolium N-ylides, were located by DFT calculations at the B3LYP/6-31G(d) level only for derivatives without a substituent in position 3 of the isoxazole ring. These isoxazolium N-ylides are thermodynamically and kinetically very unstable. According to the calculations and experimental results 2H-1,3-oxazines are usually more thermodynamically stable than the corresponding open-chain isomers, (3Z)-1-oxa-5-azahexa-1,3,5-trienes. The exception are oxaazahexatrienes derived from 5-alkoxyisoxazoles, which are thermodynamically more stable than the corresponding 2H-1,3-oxazines. Therefore, the reaction of diazo esters with 5-alkoxyisoxazoles is a good approach to 1,4-di(alkoxycarbonyl)-2-azabuta-1,3-dienes. The reaction conditions for the preparation of aryl- and halogen-substituted 2H-1,3-oxazines and 1,4-di(alkoxycarbonyl)-2-azabuta-1,3-dienes from isoxazoles were investigated.
To study light-triggered self-healing in supramolecular materials, we synthesized supramolecular thermoplastic elastomers with mechanical properties that were reversibly modulated with temperature. By changing the supramolecular architecture, we created polymers with different temperature responses. Detailed characterization of the hydrogen-bonding material revealed dramatically different temperature and mechanical stress response due to two different stable states with changes in the hydrogen bonding interactions. A semicrystalline state showed no response to oscillatory shear deformations while the melt state behaved as a typical energy dissipative material with a clear crossover between storage and loss moduli. Comparison studies on heat generation after light excitation revealed no differences in photo-thermal conversion when an Fe(II)-phenanthroline chromophore was either physically blended into the H-bonding polymer or covalently attached to the supramolecular network. These materials showed healing of scratches with light-irradiation, as long as the overlap of material absorbance and laser excitation was sufficient. Differences in the efficiency and rate of photohealing were observed, depending on the type of supramolecular interaction, and these were attributed to the differences in the thermal response of the materials' moduli. Such results provide insight into how materials can be designed with chromophores and supramolecular bonding interactions to tune the lighthealing efficiency of the materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.