A study of the α- and β-dispersion of skin bioimpedance dependence on temperature and micro-hemodynamics is presented. The vascular tone changes during the cold test are verified by the wavelet-analysis of skin temperature signals obtained simultaneously with impedance measurements. Thirty three normal healthy subjects of 28 ± 7 years old were entered into the study. The tetra-polar electrode system was used to record the resistance and reactance; measurements were carried out at 67 frequencies, in a frequency range from 2 Hz to 50 kHz. It has been found that the impedance decreases with vasodilation and increases with vasoconstriction. The high values of correlation among thermal oscillation amplitudes and Nyquist diagram parameters prove the impedance dependence on blood flow in three frequency bands corresponding to the myogenic, neurogenic and endothelial vascular tone regulation mechanisms. Using an equivalent RC circuit, we obtained the changes in the Nyquist diagram matching the experimental data. The proposed descriptive α-dispersion model can be used to study mechanisms responsible for intercellular interaction.
The behavior of a small isolated hydrate-free inclusion (a gas bubble) within a porous matrix filled with methane hydrate and either water or methane gas is analyzed. Simplifying assumptions of spherical symmetry, an infinite uniform porous medium, and negligible effects of background temperature and pressure variations focus the investigation on the features of the dynamics of a single bubble determined by a phase transition. Two solutions are presented: an exact solution of the Stefan problem obtained when the effects of gas and water flow are neglected, and a numerical solution of the full problem. The solutions are in good agreement with each other and with known asymptotic dependencies, confirming that the effects of inertia and convection transport can be neglected in the case of small inclusions. It is found that, after an initial adjustment, the radius of any small bubble decreases with time following a self-similar solution of the Stefan problem. The lifetime of a bubble is evaluated as a function of initial radius and the system's physical parameters. Possible effects of such inclusions on the filtration of methane to the surface and other aspects of the dynamics of hydrate-bearing deposits are discussed.
The aim of the study is to investigate the changes of the skin blood flow responses to cold stress in patients with diabetes mellitus type 2 through wavelet analysis of the peripheral skin temperature oscillations and to estimate their relationship with the blood viscosity values. The amplitudes of the skin temperature pulsations (ASTP) were monitored by "Microtest" device ("FM-Diagnostics", Russia); the whole blood viscosity and the shear stresses were measured by Contraves LS30 viscometer (Switzerland) at a steady flow in 9 healthy subjects and in 30 patients with type 2 diabetes mellitus. Power law and Herschel-Bulkley (HB) equations were applied to describe the blood rheology. Both models include consistency (k) and flow index (m), and the HB also gives the yield stress (τ0). The Spearman rank correlations between these parameters and the ASTP in the frequency ranges, corresponding to the myogenic, neurogenic and endothelial mechanisms of the microcirculation tone regulation were calculated. The ASTP values decreased when the blood viscosity increased. The correlation analysis revealed good ASTP-m (r > 0.5) and ASTP-k (r < -0.5) relationships in the endothelial range, while the ASTP-τ0 correlation was weaker (r≈-0.4). These correlations became lower for the ASTP during the cold stress. The results prompt manifestation of endothelial dysfunction in patients with type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.