Age-associated decreases in primary CD8 T cell responses occur, in part, due to direct effects on naive CD8 T cells to reduce intrinsic functionality, but the precise nature of this defect remains undefined. Aging also causes accumulation of antigen-naive but semi-differentiated "virtual memory" (T) cells, but their contribution to age-related functional decline is unclear. Here, we show that T cells are poorly proliferative in aged mice and humans, despite being highly proliferative in young individuals, while conventional naive T cells (T cells) retain proliferative capacity in both aged mice and humans. Adoptive transfer experiments in mice illustrated that naive CD8 T cells can acquire a proliferative defect imposed by the aged environment but age-related proliferative dysfunction could not be rescued by a young environment. Molecular analyses demonstrate that aged T cells exhibit a profile consistent with senescence, marking an observation of senescence in an antigenically naive T cell population.
Background: High blood pressure (BP) continues to be a major, poorly controlled but modifiable risk factor for cardiovascular death. Among key Western lifestyle factors, a diet poor in fiber is associated with prevalence of high BP. The impact of lack of prebiotic fiber and the associated mechanisms that lead to higher BP are unknown. Here we show that lack of prebiotic dietary fiber leads to the development of a hypertensinogenic gut microbiota, hypertension and its complications, and demonstrate a role for G-protein coupled-receptors (GPCRs) that sense gut metabolites. Methods: One hundred seventy-nine mice including C57BL/6J, gnotobiotic C57BL/6J, and knockout strains for GPR41, GPR43, GPR109A, and GPR43/109A were included. C57BL/6J mice were implanted with minipumps containing saline or a slow-pressor dose of angiotensin II (0.25 mg·kg -1 ·d -1 ). Mice were fed diets lacking prebiotic fiber with or without addition of gut metabolites called short-chain fatty acids ([SCFA)] produced during fermentation of prebiotic fiber in the large intestine), or high prebiotic fiber diets. Cardiac histology and function, BP, sodium and potassium excretion, gut microbiome, flow cytometry, catecholamines and methylation-wide changes were determined. Results: Lack of prebiotic fiber predisposed mice to hypertension in the presence of a mild hypertensive stimulus, with resultant pathological cardiac remodeling. Transfer of a hypertensinogenic microbiota to gnotobiotic mice recapitulated the prebiotic-deprived hypertensive phenotype, including cardiac manifestations. Reintroduction of SCFAs to fiber-depleted mice had protective effects on the development of hypertension, cardiac hypertrophy, and fibrosis. The cardioprotective effect of SCFAs were mediated via the cognate SCFA receptors GPR43/GPR109A, and modulated L-3,4-dihydroxyphenylalanine levels and the abundance of T regulatory cells regulated by DNA methylation. Conclusions: The detrimental effects of low fiber Westernized diets may underlie hypertension, through deficient SCFA production and GPR43/109A signaling. Maintaining a healthy, SCFA-producing microbiota is important for cardiovascular health.
This study provides the first insight into A. baumannii gene expression profiles during a life-threatening mammalian infection. Analysis of differentially regulated genes highlights numerous potential targets for the design of novel therapeutics.
Hypertension is a complex and modifiable condition in which environmental factors contribute to both onset and progression. Recent evidence has accumulated for roles of diet and the gut microbiome as environmental factors in blood pressure regulation. However, this is complex because gut microbiomes are a unique feature of each individual reflecting that individual’s developmental and environmental history creating caveats for both experimental models and human studies. Here, we describe guidelines for conducting gut microbiome studies in experimental and clinical hypertension. We provide a complete guide for authors on proper design, analyses, and reporting of gut microbiota/microbiome and metabolite studies and checklists that can be used by reviewers and editors to support robust reporting and interpretation. We discuss factors that modulate the gut microbiota in animal (eg, cohort, controls, diet, developmental age, housing, sex, and models used) and human studies (eg, blood pressure measurement and medication, body mass index, demographic characteristics including age, cultural identification, living structure, sex and socioeconomic environment, and exclusion criteria). We also provide best practice advice on sampling, storage of fecal/cecal samples, DNA extraction, sequencing methods (including metagenomics and 16S rRNA), and computational analyses. Finally, we discuss the measurement of short-chain fatty acids, metabolites produced by the gut microbiota, and interpretation of data. These guidelines should support better transparency, reproducibility, and translation of findings in the field of gut microbiota/microbiome in hypertension and cardiovascular disease.
Mosquitoes transmit a diverse group of human flaviviruses including West Nile, dengue, yellow fever, and Zika viruses. Mosquitoes are also naturally infected with insect‐specific flaviviruses (ISFs), a subgroup of the family not capable of infecting vertebrates. Although ISFs are not medically important, they are capable of altering the mosquito's susceptibility to flaviviruses and may alter host fitness. Wolbachia is an endosymbiotic bacterium of insects that when present in mosquitoes limits the replication of co‐infecting pathogens, including flaviviruses. Artificially created Wolbachia‐infected Aedes aegypti mosquitoes are being released into the wild in a series of trials around the globe with the hope of interrupting dengue and Zika virus transmission from mosquitoes to humans. Our work investigated the effect of Wolbachia on ISF infection in wild‐caught Ae. aegypti mosquitoes from field release zones. All field mosquitoes were screened for the presence of ISFs using general degenerate flavivirus primers and their PCR amplicons sequenced. ISFs were found to be common and widely distributed in Ae. aegypti populations. Field mosquitoes consistently had higher ISF infection rates and viral loads compared to laboratory colony material indicating that environmental conditions may modulate ISF infection in Ae. aegypti. Surprisingly, higher ISF infection rates and loads were found in Wolbachia‐infected mosquitoes compared to the Wolbachia‐free mosquitoes. Our findings demonstrate that the symbiont is capable of manipulating the mosquito virome and that Wolbachia‐mediated viral inhibition is not universal for flaviviruses. This may have implications for the Wolbachia‐based DENV control strategy if ISFs confer fitness effects or alter mosquito susceptibility to other flaviviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.