Recent developments in next-generation sequencing technologies have brought recognition of microbial genomes as a rich resource for novel natural product discovery. However, owing to the scarcity of efficient procedures to connect genes to molecules, only a small fraction of secondary metabolomes have been investigated to date. Transformation-associated recombination (TAR) cloning takes advantage of the natural in vivo homologous recombination of Saccharomyces cerevisiae to directly capture large genomic loci. Here we report a TAR-based genetic platform that allows us to directly clone, refactor, and heterologously express a silent biosynthetic pathway to yield a new antibiotic. With this method, which involves regulatory gene remodeling, we successfully expressed a 67-kb nonribosomal peptide synthetase biosynthetic gene cluster from the marine actinomycete Saccharomonospora sp. CNQ-490 and produced the dichlorinated lipopeptide antibiotic taromycin A in the model expression host Streptomyces coelicolor. The taromycin gene cluster (tar) is highly similar to the clinically approved antibiotic daptomycin from Streptomyces roseosporus, but has notable structural differences in three amino acid residues and the lipid side chain. With the activation of the tar gene cluster and production of taromycin A, this study highlights a unique "plug-and-play" approach to efficiently gaining access to orphan pathways that may open avenues for novel natural product discoveries and drug development.biosynthesis | drug discovery | genome mining
The Claremont Graduate School This study tested the generalizability of the consistency effect to real-world settings. The consistency effect refers to the finding that items inconsistent with expectations are better recalled and recognized than items consistent with expectations. In two experiments, subjects walked into a graduate student's office or a preschool classroom. Half of the items in each setting were consistent with expectations about that setting, and half were inconsistent. A recall and a samechanged recognition memory test followed immediately or 1 day later. In both experiments, the consistency effect was affirmed; items inconsistent with expectations were significantly better recalled and recognized than items consistent with expectations. This result is discussed in terms of differences in the encoding processes that operate on inconsistent and consistent items. The present study extends the generalizability of results from picture memory studies to real-world settings.
In the ongoing effort to unlock the chemical potential of marine bacteria, genetic engineering of biosynthetic gene clusters (BGCs) is increasingly used to awake or improve expression of biosynthetic genes that may lead to discovery of novel bioactive natural products. Previously, we reported the successful capture, engineering and heterologous expression of an orphan BGC from the marine actinomycete Saccharomonospora sp. CNQ-490, which resulted in the isolation of the novel lipopeptide antibiotic taromycin A. Herein we report the isolation and structure elucidation of taromycin B, the second most abundant product of the taromycin biosynthetic series, and show that taromycins A and B exhibit complex chromatographic properties indicative of interconverting conformations. Taromycins A and B display potent activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium clinical isolates, suggestive that the taromycin molecular scaffold is a promising starting point for further derivatization to produce compounds with promising antibiotic characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.