Nuclear factor-κB (NF-κB) is a ubiquitous transcription factor that regulates multiple aspects of cancer formation, growth, and treatment response. Glioblastoma (GBM), the most common primary malignant tumor of the central nervous system, is characterized by molecular heterogeneity, resistance to therapy, and high NF-κB activity. In this review, we examine the mechanisms by which oncogenic pathways active in GBM impinge on the NF-κB system, discuss the role of NF-κB signaling in regulating the phenotypic properties that promote GBM and, finally, review the components of the NF-κB pathway that have been targeted for treatment in both preclinical studies and clinical trials. While a direct role for NF-κB in gliomagenesis has not been reported, the importance of this transcription factor in the overall malignant phenotype suggests that more rational and specific targeting of NF-κB-dependent pathways can make a significant contribution to the management of GBM.
NF-(B is a major regulator of age-dependent gene expression and the p50/NF-(B1 subunit is an integral modulator of NF-(B signaling. Here, we examined Nfkb1−/− mice to investigate the relationship between this subunit and aging. Although Nfkb1−/− mice appear similar to littermates at six months of age, by 12 months they have a higher incidence of several observable age-related phenotypes. In addition, aged Nfkb1−/− animals have increased kyphosis, decreased cortical bone, increased brain GFAP staining and a decrease in overall lifespan compared to Nfkb1+/+. In vitro, serially passaged primary Nfkb1−/− MEFs have more senescent cells than comparable Nfkb1+/+ MEFs. Also, Nfkb1−/− MEFs have greater amounts of phospho-H2AX foci and lower levels of spontaneous apoptosis than Nfkb1+/+, findings that are mirrored in the brains of Nfkb1−/− animals compared to Nfkb1+/+. Finally, in wildtype animals a substantial decrease in p50 DNA binding is seen in aged tissue compared to young. Together, these data show that loss of Nfkb1 leads to early animal aging that is associated with reduced apoptosis and increased cellular senescence. Moreover, loss of p50 DNA binding is a prominent feature of aged mice relative to young. These findings support the strong link between the NF-(B pathway and mammalian aging.
A major obstacle to the management of malignant glioma is the inability to effectively deliver therapeutic agent to the tumor. In this study, we describe a polymeric nanoparticle vector that not only delivers viable therapeutic, but can also be tracked in vivo using MRI. Nanoparticles, produced by a non-emulsion technique, were fabricated to carry iron oxide within the shell and the chemotherapeutic agent, temozolomide (TMZ), as the payload. Nanoparticle properties were characterized and subsequently their endocytosis-mediated uptake by glioma cells demonstrated. Convection enhanced delivery (CED) can disperse nanoparticles through the rodent brain and their distribution is accurately visualized by MRI. Infusion of nanoparticles does not result in observable animal toxicity relative to control. CED of TMZ bearing nanoparticles prolongs the survival of animals with intracranial xenografts compared to control. In conclusion, the described nanoparticle vector represents a unique multifunctional platform that can be used for image-guided treatment of malignant glioma.
The response of patients with gliomas to alkylating chemotherapy is heterogeneous. However, there are currently no universally accepted predictors of patient response to these agents. We identify the nuclear factor κB (NF-κB) co-regulator B cell CLL/lymphoma 3 (BCL-3) as an independent predictor of response to temozolomide (TMZ) treatment. In glioma patients with tumors that have a methylated -methylguanine DNA methyltransferase () promoter, high BCL-3 expression was associated with a poor response to TMZ. Mechanistically, BCL-3 promoted a more malignant phenotype by inducing an epithelial-to-mesenchymal transition in glioblastomas through promoter-specific NF-κB dimer exchange. Carbonic anhydrase II (CAII) was identified as a downstream factor promoting BCL-3-mediated resistance to chemotherapy. Experiments in glioma xenograft mouse models demonstrated that the CAII inhibitor acetazolamide enhanced survival of TMZ-treated animals. Our data suggest that BCL-3 might be a useful indicator of glioma response to alkylating chemotherapy and that acetazolamide might be repurposed as a chemosensitizer for treating TMZ-resistant gliomas.
Alkylating chemotherapy is a central component of the management of glioblastoma (GBM). Among the factors that regulate the response to alkylation damage, NF-kB acts to both promote and block cytotoxicity. In this study, we used genome-wide expression analysis in U87 GBM to identify NF-kB-dependent factors altered in response to temozolomide and found the long noncoding RNA (lncRNA) MALAT1 as one of the most significantly upregulated. In addition, we demonstrated that MALAT1 expression was coregulated by p50 (p105) and p53 via novel kBand p53-binding sites in the proximal MALAT1 coding region. Temozolomide treatment inhibited p50 recruitment to its cognate element as a function of Ser329 phosphorylation while concomitantly increasing p53 recruitment. Moreover, luciferase reporter studies demonstrated that both kB and p53 cis-elements were required for efficient transactivation in response to temozolomide. Depletion of MALAT1 sensitized patient-derived GBM cells to temozolomide cytotoxicity, and in vivo delivery of nanoparticleencapsulated anti-MALAT1 siRNA increased the efficacy of temozolomide in mice bearing intracranial GBM xenografts. Despite these observations, in situ hybridization of GBM specimens and analysis of publicly available datasets revealed that MALAT1 expression within GBM tissue was not prognostic of overall survival. Together, these findings support MALAT1 as a target for chemosensitization of GBM and identify p50 and p52 as primary regulators of this ncRNA. Significance: These findings identify NF-kB and p53 as regulators of the lncRNA MALAT1 and suggest MALAT1 as a potential target for the chemosensitization of GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.