H diffusion constants, D H , have been obtained from steady-state fluxes through Pd membranes with the downstream side maintained at p H 2 ≈ 0. Good linearity of plots of H flux versus (1/d), where d is the thickness, attests to H permeation being bulk diffusion controlled in this temperature (423-523 K) and p H 2 range (≤0.2 MPa). D H values have been determined at constant p up and also at constant H content. H fluxes through Pd membranes with three different surface treatments have been investigated (polished (unoxidized), oxidized and palladized) in order to determine the effects of these pre-treatments. The palladized and oxidized membranes give similar D H values but the polished membranes give values about 12% lower.
H diffusion constants have been determined from steady-state fluxes through Pd-Ag alloy membranes. The upstream side is maintained at a nearly constant pup (and consequently at a nearly constant rup=H/(Pd(1-x)Agx)) atom ratio, whereas the downstream side is at pH2 approximately 0 (rdown=0) (423-523 K). It is shown that the permeability is a maximum for atom fraction Ag, XAg=0.23 (423-523 K) at both pup=20.3 and 50.6 kPa. DH has been determined for some Pd-Ag alloys as a function of r in the dilute region, and it decreases with r even at small H contents for alloys with XAg<0.35. The concentration dependence of DH(cH) has been determined for the Pd0.77Ag0.23 alloy over a large concentration range. The effect of nonideality on DH(r) and ED(r) has been systematically determined as a function of XAg, where XAg is the atom fraction of Ag in the H-free alloy. (dDH/dr) increases with XAg up to XAg=0.35 and then changes from negative to positive at approximately 0.35. The activation energies for diffusion, ED(r), have been determined as a function of H content in the dilute range for several Pd-Ag alloy membranes, and the conversion to concentration-independent E*D values has been carried out in several different ways.
One sample of bulk Ti has been loaded with a 50%/50% deuterium/tritium (D/T) mixture and statically aged for 6.5 years. Thermal desorption of the sample shows an initial release of hydrogen isotopes followed by 3 He release. Subsequent D 2 loading/desorption was used to quantify the trapped tritium heel. The sample shows an excess hydrogen capacity as a second thermal desorption peak that partially disappears and shifts with annealing at 923-973K. The main hydrogen desorption peak also shifts to higher temperature, indicating a partial reversal of the tritium-decay induced damage by annealing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.