We study the shift dynamics of the groups G = G n ( x 0 x m x k - 1 ) G=G_{n}(x_{0}x_{m}x_{k}^{-1}) of Fibonacci type introduced by Johnson and Mawdesley. The main result concerns the order of the shift automorphism of 𝐺 and determining whether it is an outer automorphism, and we find the latter occurs if and only if 𝐺 is not perfect. A result of Bogley provides that the aspherical presentations determine groups admitting a free shift action by Z n \mathbb{Z}_{n} on the nonidentity elements of 𝐺, from which it follows that the shift is an outer automorphism of order 𝑛 when 𝐺 is nontrivial. The focus of this paper is therefore on the non-aspherical cases, which include for example the Fibonacci and Sieradski groups. With few exceptions, the fixed-point and freeness problems for the shift automorphism are solved, in some cases using computational and topological methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.