Abstract:We use the Dirac equation in a fixed black hole background and different independent techniques to demonstrate the absence of fermionic bound states around a Schwarzschild black hole. In particular, we show that no embedded eigenvalues exist which has been claimed for the case when the energy is less than the particle's mass. We explicitly prove that the claims regarding the embedded eigenvalues can be traced back to an oversimplified approximation in the calculation. We conclude that no bound states exist regardless of the value of the mass.
We consider a Fermion in the presence of a rotating black hole immersed in a universe with positive cosmological constant. After deriving new formulae for the event, Cauchy and cosmological horizons we adopt the Carter tetrad to separate the aforementioned equation into a radial and angular equation. We show how the Chandrasekhar ansatz leads to the construction of a symmetry operator that can be interpreted as the square root of the squared total angular momentum operator. Furthermore, we prove that the the spectrum of the angular operator is discrete and consists of simple eigenvalues and by means of the functional Bethe ansatz method we also derive a set of necessary and sufficient conditions for the angular operator to have polynomial solutions. Finally, we show that there exist no bound states for the Dirac equation in the non-extreme case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.