This research investigated methods for tailoring a commercial, lignite-based granular activated carbon (GAC) to enhance its adsorption of 2-methylisoborneol (MIB) from natural water. Tailoring efforts focused on heat treatments in gas environments comprising steam and/or methane, since these gases can alter GAC pore structure and surface chemistry. Heat treatments that combined methane and steam enhanced MIB adsorption considerably, causing a 4-fold improvement (over untreated GAC) in fixed-bed adsorption performance relative to initial MIB breakthrough. These favorable effects, observed in rapid small-scale column tests, occurred following simultaneous and separate (sequential) applications of methane and steam. Moderately low temperature steam treatments also improved MIB uptake in fixed-bed adsorption tests but to a lesser extent (approximately 1.5-fold). In contrast, methane treatments alone, at various temperatures, led to significant carbon deposition within the GAC pore structure. As a result, total pore volume was reduced and MIB adsorption performance declined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.