Summary• Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies.• Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras.• We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (± 4.0 vs 4.8°C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence.• Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships.
The purpose of this study is to test various masticatory-stress hypotheses about the evolution and function of well-developed browridges of higher primates. This was done by measuring and analyzing patterns of in vivo bone strain recorded from three-element rosette strain gages bonded to the supraorbital region and to other portions of the bony face of Macaca fascicularis and Papio anubis during mastication and incision. The magnitude and direction of the principal strains recorded support Endo's hypothesis that the supraorbital region during mastication and incision is bent in the frontal plane (Endo, 1966). Our data do not, however, support his hypothesis that the supraorbital region is bent more during incision than during mastication. The data also demonstrate that overall levels of supraorbital strain are not larger in more prognathic subjects. Most importantly, the data indicate that the supraorbital region of nonhuman catarrhines is strained very little during mastication and incision. This indicates that there is much more supraorbital bone than is necessary both to counter masticatory loads and to provide an adequate safety factor to failure for these loads. This in turn suggests that the macaque and baboon browridges can be considerably reduced in size and still maintain these required structural characteristics. Thus, our experiments provide no support whatsoever for those hypotheses that directly link browridge morphology to masticatory stress (cf. Endo, 1966; Russell, 1983, 1985). A recent review of Endo's original work indicates that this latter statement is also true for humans (Picq and Hylander, 1989). We conclude, therefore, that there is no good reason to believe that enlarged browridges in living and/or fossil primates are structural adaptations to counter intense masticatory forces. The evolution of browridge morphology in primates is best explained on the basis of factors related to the position of the brain relative to the orbits (Moss and Young, 1960). When these structures are widely separated, as in gorillas, the large intervening space must be bridged with bone. In addition, enough bone must be present within the supraorbital and bridged regions to prevent structural failure due to non-masticatory external forces associated with highly active primates (e.g., accidental traumatic forces applied to the orbits and neurocranium). This requirement results in both pronounced browridges and in much more supraorbital bone than is necessary to counter routine cyclical stress during mastication and incision. This in turn explains why bone strains recorded from the supraorbital region are extremely small relative to other portions of the primate face during mastication and incision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.