The commercially available microMOSFET dosimeter was characterized for its dosimetric properties in radiotherapy treatments. The MOSFET exhibited excellent correlation with the dose and was linear in the range of 5-500 cGy. No measurable effect in response was observed in the temperature range of 20-40 degrees C. No significant change in response was observed by changing the dose rate between 100 and 600 monitor units (MU) min(-1) or change in the dose per pulse. A 3% post-irradiation fading was observed within the first 5 h of exposure and thereafter it remained stable up to 60 h. A uniform energy response was observed in the therapy range between 4 MV and 18 MV. However, below 0.6 MeV (Cs-132), the MOSFET response increased with the decrease in energy. The MOSFET also had a uniform dose response in 6-20 MeV electron beams. The directional dependence of MOSFET was within +/-2% for all the energies studied. The inherent build-up of the MOSFET was evaluated dosimetrically and found to have varying water equivalent thickness, depending on the energy and the side of the beam entry. At depth, a single calibration factor obtained by averaging the MOSFET response over different field sizes, energies, orientation and depths reproduced the ion chamber measured dose to within 5%. The stereotactic and the penumbral measurements demonstrated that the MOSFET could be used in a high gradient field such as IMRT. The study showed that the microMOSFET dosimeter could be used as an in vivo dosimeter to verify the dose delivery to the patient to within +/-5%.
Partial transmission through rounded leaf ends of Varian multileaf collimators (MLC) is accounted for with a parameter called the dosimetric leaf gap (DLG). Verification of the value of the DLG is needed when the dose delivery is accompanied by gantry rotation in VMAT plans. We compared the doses measured with GAFCHROMIC film and an ionization chamber to treatment planning system (TPS) calculations to identify the optimum values of the DLG in clinical plans of the whole brain with metastases transferred to a phantom. We noticed the absence of a single value of the DLG that properly models all VMAT plans in our cohort (the optimum DLG varied between 0.93±0.15 mm and 2.2±0.2 mm). The former value is considerably different from the optimum DLG in sliding window plans (about 2.0 mm) that approximate IMRT plans. We further found that a single‐value DLG model cannot accurately reproduce the measured dose profile even of a uniform static slit at a fixed gantry, which is the simplest MLC‐delimited field. The calculation overestimates the measurement in the proximal penumbra, while it underestimates in the distal penumbra. This prompted us to expand the DLG parameter from a plan‐specific number to a mathematical concept of the DLG being a function of the distance in the beam's eye view (BEV) between the dose point and the leaf ends. Such function compensates for the difference between the penumbras in a beam delimited with a rounded leaf MLC and delimited with solid jaws. Utilization of this concept allowed us generating a pair of step‐and‐shoot MLC plans for which we could qualitatively predict the value of the DLG providing best match to ionization chamber measurements. The plan for which the leafs stayed predominantly at positions requiring low values of the DLG (as seen in the profiles of 1D slits) yielded the combined DLG of 1.1±0.2 mm, while the plan with leafs staying at positions requiring larger values of the DLG yielded the DLG 2.4±0.2 mm. Considering the DLG to be a function of the distance (in BEV) between the dose point and the leaf ends allowed us to provide an explanation as to why conventional single‐number DLG is plan‐specific in VMAT plans.PACS numbers: 87.56.jf, 87.56.nk
High‐precision radiotherapy planning and quality assurance require accurate dosimetric and geometric phantom measurements. Phantom design requires materials with mechanical strength and resilience, and dosimetric properties close to those of water over diagnostic and therapeutic ranges. Plastic Water Diagnostic Therapy (PWDT: CIRS, Norfolk, VA) is a phantom material designed for water equivalence in photon beams from 0.04 MeV to 100 MeV; the material has also good mechanical properties. The present article reports the results of computed tomography (CT) imaging and dosimetric studies of PWDT to evaluate the suitability of the material in CT and therapy energy ranges.We characterized the water equivalence of PWDT in a series of experiments in which the basic dosimetric properties of the material were determined for photon energies of 80 kVp, 100 kVp, 250 kVp, 4 MV, 6 MV, 10 MV, and 18 MV. Measured properties included the buildup and percentage depth dose curves for several field sizes, and relative dose factors as a function of field size. In addition, the PWDT phantom underwent CT imaging at beam qualities ranging from 80 kVp to 140 kVp to determine the water equivalence of the phantom in the diagnostic energy range. The dosimetric quantities measured with PWDT agreed within 1.5% of those determined in water and Solid Water (Gammex rmi, Middleton, WI). Computed tomography imaging of the phantom was found to generate Hounsfield numbers within 0.8% of those generated using water. The results suggest that PWDT material is suitable both for regular radiotherapy quality assurance measurements and for intensity‐modulated radiation therapy (IMRT) verification work. Sample IMRT verification results are presented.PACS number: 87.53Dq
Purpose: To assess dosimetric properties and identify required updates to commonly used protocols (including use of film and ionization chamber) pertaining to a clinical linac configured into FLASH (ultra-high dose rate) electron mode.Methods: An 18MV photon beam of a Varian iX linac was converted to FLASH electron beam by replacing the target and the flattening filter with an electron scattering foil. The dose was prescribed by entering the MUs through the console. Fundamental beam properties, including energy, dose rate, dose reproducibility, field size, and dose rate dependence on the SAD, were examined in preparation for radiobiological experiments. Gafchromic EBT-XD film was evaluated for usability in measurements at ultra-high dose rates by comparing the measured dose to the inverse square model. Selected previously reported models of chamber efficiencies were fitted to measurements in a broad range of dose rates. Results:The performance of the modified linac was found adequate for FLASH radiobiological experiments. With exception of the increase in the dose per MU on increase in the repetition rate, all fundamental beam properties proved to be in line with expectations developed with conventional linacs. The field size followed the theorem of similar triangles. The highest average dose rate (2 × 10 4 Gy/s) was found next to the internal monitor chamber, with the field size of FWHM = 1.5 cm.Independence of the dose readings on the dose rate (up to 2 × 10 4 Gy/s) was demonstrated for the EBT-XD film. A model of recombination in an ionization chamber was identified that provided good agreement with the measured chamber efficiencies for the average dose rates up to at least 2 × 10 3 Gy/s. Conclusion: Dosimetric measurements were performed to characterize a linac converted to FLASH dose rates. Gafchromic EBT-XD film and dose rate-corrected cc13 ionization chamber were demonstrated usable at FLASH dose rates.
An electrical Impedance based tool is designed and developed to aid physicians performing clinical exams focusing on cancer detection. Current research envisions improvement in sensor-based measurement technology to differentiate malignant and benign lesions in human subjects. The tool differentiates malignant anomalies from nonmalignant anomalies using Electrical Impedance Spectroscopy (EIS). This method exploits cancerous tissue behavior by using EIS technique to aid early detection of cancerous tissue. The correlation between tissue electrical properties and tissue pathologies is identified by offering an analysis technique based on the Cole model. Additional classification and decision-making algorithm is further developed for cancer detection. This research suggests that the sensitivity of tumor detection will increase when supplementary information from EIS and built-in intelligence are provided to the physician.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.