Recent studies suggest that expression of cyclooxygenase-2 (Cox-2) is elevated in transitional cell carcinoma (TCC) of the urinary bladder and that inhibition of Cox-2 activity suppresses bladder cancer in experimental animal models. We have investigated the expression of Cox-2 protein in human TCCs (n = 85), in in situ carcinomas (Tis) of the urinary bladder (n = 17), and in nonneoplastic urinary bladder samples (n = 16) using immunohistochemistry. Cox-2 immunoreactivity was detected in 66% (67 of 102) of the carcinomas, whereas only 25% (4 of 16) of the nonneoplastic samples were positive (P: < 0.005). Cox-2 immunoreactivity localized to neoplastic cells in the carcinoma samples. The rate of positivity was the same in invasive (T1-3; 70%, n = 40) and in noninvasive (Tis and Ta; 65%, n = 62) carcinomas, but noninvasive tumors had a higher frequency (32%) of homogenous pattern of staining (>90% of the tumor cells positive) than the invasive carcinomas (10%) (P: < 0.05). However, several invasive TCCs exhibited the strongest intensity of Cox-2 staining in the invading cells, whereas other parts of the tumor were virtually negative. Finally, strong Cox-2 positivity was also found in nonneoplastic ulcerations (2 of 2) and in inflammatory pseudotumors (2 of 2), in which the immunoreactivity localized to the nonepithelial cells. Taken together, our data suggest that Cox-2 is highly expressed in noninvasive bladder carcinomas, whereas the highest expression of invasive tumors associated with the invading cells, and that Cox-2 may also have a pathophysiological role in nonneoplastic conditions of the urinary bladder, such as ulcerations and inflammatory pseudotumors.
Cytokines mediate many host responses to bacterial infections. We determined the inflammatory activities of five cytokines in the central nervous system: TNF-alpha, IL-1 alpha, IL-1 beta, macrophage inflammatory protein 1 (MIP-1), and macrophage inflammatory protein 2 (MIP-2). Using a rabbit model of meningeal inflammation, each cytokine (except IL-1 beta) induced enhanced blood brain barrier permeability, leukocytosis in cerebrospinal fluid, and brain edema. Homologous antibodies to each mediator inhibited leukocytosis and brain edema, and moderately decreased blood brain barrier permeability. In rabbits treated with anti-CD-18 antibody to render neutrophils dysfunctional for adhesion, each cytokine studied lost the ability to cause leukocytosis and brain edema. After intracisternal challenge with pneumococci, antibodies to TNF or IL-1 prevented inflammation, while anti-MIP-1 or anti-MIP-2 caused only a 2-h delay in the onset of inflammation. We suggest these cytokines have multiple inflammatory activities in the central nervous system and contribute to tissue damage during pneumococcal meningitis.
SummaryThe adherence of Bordetella pertussis to human respiratory cilia is critical to the pathogenesis of whooping cough but the significance of bacterial attachment to macrophages has not been determined . Adherence to cilia and macrophages is mediated by two large, nonfimbrial bacterial proteins, filamentous hemagglutinin (FHA), and pertussis toxin (PT) . PT and FHA both recognize carbohydrates on cilia and macrophages; FHA also contains an Arg-Gly-Asp (RGD) sequence which promotes bacterial association with the macrophage integrin complement receptor 3 (CR3) . We determined that virulent R pertussis enter and survive in mammalian macrophages in vitro and that CR3 is important for this uptake process . We then determined the relative contribution of CR3 versus carbohydrate-dependent interactions to in vivo pulmonary colonization using a rabbit model. R pertussis colonized the lung as two approximately equal populations, one extracellular population attached to ciliary and macrophage surface glycoconjugates and another population within pulmonary macrophages. Loss of the CR3 interaction, either by mutation of FHA or treatment with antibody to CR3, disrupted accumulation of viable intracellular bacteria but did not prevent lung pathology. In contrast, elimination of carbohydrate-bound bacteria, either by a competitive receptor analogue or an anti-receptor antibody, was sufficient to prevent pulmonary edema. We propose that CR3-dependent localization of R pertussis within macrophages promotes persistence of bacteria in the lung without pulmonary injury. On the other hand, the presence of extracellular bacteria adherent to cilia and macrophages in carbohydrate-dependent interactions is associated with pulmonary pathology. ordetelia pertussis is a Gram-negative coccobacillus that is the causative agent of whooping cough. It has long been recognized that R pertussis establishes pulmonary colonization by adhering specifically to human ciliated epithelial cells, and this interaction has been studied in detail in vitro (1) . Recently, however, in vitro studies have shown that R pertussis also adheres specifically to human macrophages (2) and can enter and survive within tissue culture cells (3-5) . The purpose of this study was to determine the importance of the interaction between R pertussis and macrophages during pulmonary infection .Bacterial adherence to cilia and macrophages is mediated by two nonfimbrial bacterial proteins, filamentous hemagglutinin (FHA)t and pertussis toxin (PT) which are expressed only by virulent cells (1, 2) . These proteins are functional either when bound to the bacterial surface or when secreted into the surrounding medium during growth and serve as bifunctional ligands bridging the bacterial surface and glycoconjugates on eukaryotic cell membranes (1, 6). Both 'Abbreviations used in this paper. FHA, filamentous hemagglutinin ; PT, pertussis toxin; RGD, Arg-Gly-Asp sequence .adhesins are unusually large molecules with multiple binding affinities, features reminiscent of eukaryotic extra...
We tested if specific inhibition of recruitment of leukocytes across the blood brain barrier from the vascular compartment to the cerebrospinal fluid (CSF) space reduced tissue damage and improved the outcome of infection in a rabbit model of experimental meningitis. The CD11/CD18 complex of receptors on leukocytes promotes adhesion of these cells to endothelia, a process required for egress of cells into the extravascular space. Intravenous injection of the anti-CD18 mAb IB4 effectively blocked the development of leukocytosis in the CSF of animals challenged intracisternally with living bacteria, bacterial endotoxin, or bacterial cell wall. This effect was associated with protection from blood brain barrier injury as measured by exclusion of serum proteins from CSF in mAb-treated animals. The densities of bacteria in CSF and the degrees of bacterial killing due to ampicillin were not affected by the antibody. Animals receiving the antibody experienced a delay in the development of bacteremia and a significantly reduced inflammatory response during ampicillin-induced bacterial killing. Therapy with mAb IB4 prevented development of brain edema and death in animals challenged with lethal doses of Streptococcus pneumoniae. These studies indicate that the major mechanism of leukocyte migration across the blood brain barrier involves the CD11/CD18 receptors and that inflammatory leukocytes recruited by this mechanism are a major cause of blood brain barrier injury and cerebral edema during meningitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.