Provoking a specific cellular immune response against tumor-associated antigens is a promising therapeutic strategy to treat cancers with defined antigens such as melanoma. In recent clinical trials, however, immune responses against melanoma antigens have been elicited without consistent clinical responses, suggesting the need for approaches that potentiate the specific cellular immune response. Since B lymphocytes have been reported to exert a negative effect on the cellular arm of the immune response in certain model systems, the authors compared the protective immunity elicited by melanoma antigens in B cell-deficient microMT mice to that obtained in fully immunocompetent C57BL/6 mice. Immunization with melanoma-associated antigens was accomplished using recombinant adenovirus (Ad) vectors encoding human gp100 (Ad2/gp100) or murine TRP-2 (Ad2/mTRP-2). A single dose of Ad2/gp100 or Ad2/mTRP-2 inhibited the growth of established subcutaneous B16 melanoma tumors in B cell-deficient but not wild-type C57BL/6 mice. The enhanced tumor protection observed in B cell-deficient mice appeared to be associated with potentiation of the magnitude and longevity of the specific cellular immune response. Natural killer (NK) cells were also found to be essential to the protective immune response in microMT mice because NK cell depletion with anti-asialo-GM1 antibody resulted in both the loss of tumor growth suppression and attenuation of the specific cellular immune response. The authors conclude that the protective cell-mediated immunity provoked by Ad-based cancer vaccines is enhanced in the absence of B cells, suggesting that a therapeutic regimen that includes depletion of B lymphocytes may be beneficial to cancer vaccine therapy.
Adenoviral vectors expressing tumor-associated antigens can be used to evoke a specific immune response and inhibit tumor growth. In this study, we tested the efficacy of adenoviral vectors encoding human gp100 (Ad2/hugp100), murine gp100 (Ad2/mugp100), or murine TRP-2 (Ad2/muTRP-2) for their ability to elicit a specific cellular immune response and inhibit the growth of B16 melanoma tumor cells in the mouse. C57BL/6 mice were immunized with Ad2/hugp100, Ad2/mugp100, or Ad2/muTRP-2 either 2 weeks prior to B16-F10 tumor challenge (prophylactic treatment) or 3 days after tumor challenge (active treatment). Ad2/hugp100 and Ad2/muTRP-2 administered to two or more intradermal (i.d.) sites inhibited subsequent subcutaneous tumor growth in > or = 80% of the mice and elicited an antigen-specific cytotoxic T lymphocyte response, whereas other administration routes were not as effective. Ad2/mugp100 administered to two i.d. sites did not inhibit tumor growth or provoke cellular immunity. Immunization was less effective with active treatment where tumor growth was not significantly inhibited by a single dose of either Ad2/muTRP-2 or Ad2/hugp100. However, increasing the number of intradermal immunization sites and the number of doses resulted in progressive improvements in protection from tumor growth in the active treatment model. In conclusion, breaking host tolerance to elicit protective immunity by using adenoviral vectors expressing melanoma-associated antigens is dependent upon the choice of antigen, the site of administration, and the number of doses. These observations provide insights into the clinical applicability of adenoviral vaccines for immunotherapy of malignant diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.