Mutations in DOCK8 result in autosomal recessive Hyper-IgE syndrome with combined immunodeficiency (CID). However, the natural course of disease, long-term prognosis, and optimal therapeutic management have not yet been clearly defined. In an international retrospective survey of patients with DOCK8 mutations, focused on clinical presentation and therapeutic measures, a total of 136 patients with a median follow-up of 11.3 years (1.3-47.7) spanning 1693 patient years, were enrolled. Eczema, recurrent respiratory tract infections, allergies, abscesses, viral infections and mucocutaneous candidiasis were the most frequent clinical manifestations. Overall survival probability in this cohort [censored for hematopoietic stem cell transplantation (HSCT)] was 87 % at 10, 47 % at 20, and 33 % at 30 years of age, respectively. Event free survival was 44, 18 and 4 % at the same time points if events were defined as death, life-threatening infections, malignancy or cerebral complications such as CNS vasculitis or stroke. Malignancy was diagnosed in 23/136 (17 %) patients (11 hematological and 9 epithelial cancers, 5 other malignancies) at a median age of 12 years. Eight of these patients died from cancer. Severe, life-threatening infections were observed in 79/136 (58 %); severe non-infectious cerebral events occurred in 14/136 (10 %). Therapeutic measures included antiviral and antibacterial prophylaxis, immunoglobulin replacement and HSCT. This study provides a comprehensive evaluation of the clinical phenotype of DOCK8 deficiency in the largest cohort reported so far and demonstrates the severity of the disease with relatively poor prognosis. Early HSCT should be strongly considered as a potential curative measure.
CD27, a tumor necrosis factor receptor family member, interacts with CD70 and influences T-, B-and NK-cell functions. Disturbance of this axis impairs immunity and memory generation against viruses including Epstein Barr virus (EBV), influenza, and others. CD27 is commonly used as marker of memory B cells for the classification of B-cell deficiencies including common variable immune deficiency. Flow cytometric immunophenotyping including expression analysis of CD27 on lymphoid cells was followed by capillary sequencing of CD27 in index patients, their parents, and non-affected siblings. More comprehensive genetic analysis employed single nucleotide polymorphism-based homozygosity mapping and whole exome sequencing. Analysis of exome sequencing data was performed at two centers using slightly different data analysis pipelines, each based on the Genome Analysis ToolKit Best Practice version 3 recommendations. A comprehensive clinical characterization was correlated to genotype. We report the simultaneous confirmation of human CD27 deficiency in 3 independent families (8 patients) due to a homozygous mutation (p. Cys53Tyr) revealed by whole exome sequencing, leading to disruption of an evolutionarily conserved cystein knot motif of the transmembrane receptor. Phenotypes varied from asymptomatic memory B-cell deficiency (n=3) to EBV-associated hemophagocytosis and lymphoproliferative disorder (LPD; n=3) and malignant lymphoma (n=2; +1 after LPD). Following EBV infection, hypogammaglobulinemia developed in at least 3 of the affected individuals, while specific anti-viral and anti-polysaccharide antibodies and EBV-specific T-cell responses were detectable. In severely affected patients, numbers of iNKT cells and NKcell function were reduced. Two of 8 patients died, 2 others underwent allogeneic hematopoietic stem cell transplantation successfully, and one received anti-CD20 (rituximab) therapy repeatedly. Since homozygosity mapping and exome sequencing did not reveal additional modifying factors, our findings suggest that lack of functional CD27 predisposes towards a combined immunodeficiency associated with potentially fatal EBV-driven hemophagocytosis, lymphoproliferation, and lymphoma development.
The purpose of this study was the appraisal of the clinical and functional consequences of germline mutations within the gene for the IL-2 inducible T-cell kinase, ITK. Among patients with Epstein-Barr virus-driven lymphoproliferative disorders (EBV-LPD), negative for mutations in SH2D1A and XIAP (n ¼ 46), we identified two patients with R29H or D500T,F501L,M503X mutations, respectively. Human wild-type (wt) ITK, but none of the mutants, was able to rescue defective calcium flux in murine Itk À/À T cells. Pulse-chase experiments showed that ITK mutations lead to varying reductions of protein half-life from 25 to 69% as compared with wt ITK (107 min). The pleckstrin homology domain of wt ITK binds most prominently to phosphatidylinositol monophosphates (PI(3)P, PI(4)P, PI(5)P) and to lesser extend to its double or triple phosphorylated derivates (PIP2, PIP3), interactions which were dramatically reduced in the patient with the ITK R29H mutant. ITK mutations are distributed over the entire protein and include missense, nonsense and indel mutations, reminiscent of the situation in its sister kinase in B cells, Bruton's tyrosine kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.