Meta-analysis seeks to combine the results of several experiments in order to improve the accuracy of decisions. It is common to use a test for homogeneity to determine if the results of the several experiments are sufficiently similar to warrant their combination into an overall result. Cochran's Q statistic is frequently used for this homogeneity test. It is often assumed that Q follows a chi-square distribution under the null hypothesis of homogeneity, but it has long been known that this asymptotic distribution for Q is not accurate for moderate sample sizes. Here, we present an expansion for the mean of Q under the null hypothesis that is valid when the effect and the weight for each study depend on a single parameter, but for which neither normality nor independence of the effect and weight estimators is needed. This expansion represents an order O(1/n) correction to the usual chi-square moment in the one-parameter case. We apply the result to the homogeneity test for meta-analyses in which the effects are measured by the standardized mean difference (Cohen's d-statistic). In this situation, we recommend approximating the null distribution of Q by a chi-square distribution with fractional degrees of freedom that are estimated from the data using our expansion for the mean of Q. The resulting homogeneity test is substantially more accurate than the currently used test. We provide a program available at the Paper Information link at the Biometrics website http://www.biometrics.tibs.org for making the necessary calculations.
This study was framed within a quantitative research methodology to develop a concise measure of calculus self-efficacy with high psychometric properties. A survey research design was adopted in which 234 engineering and economics students rated their confidence in solving year-one calculus tasks on a 15-item inventory. The results of a series of exploratory factor analyses using minimum rank factor analysis for factor extraction, oblique promin rotation, and parallel analysis for retaining extracted factors revealed a one-factor solution of the model. The final 13-item inventory was unidimensional with all eigenvalues greater than 0.42, an average communality of 0.74, and a 62.55% variance of the items being accounted for by the latent factor, i.e., calculus self-efficacy. The inventory was found to be reliable with an ordinal coefficient alpha of 0.90. Using Spearman’ rank coefficient, a significant positive correlation ρ ( 95 ) = 0.27 , p < 0.05 (2-tailed) was found between the deep approach to learning and calculus self-efficacy, and a negative correlation ρ ( 95 ) = − 0.26 , p < 0.05 (2-tailed) was found between the surface approach to learning and calculus self-efficacy. These suggest that students who adopt the deep approach to learning are confident in dealing with calculus exam problems while those who adopt the surface approach to learning are less confident in solving calculus exam problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.