Many everyday life predictions rely on the experience and memory of event frequencies, i.e., natural samplings. We used functional magnetic resonance imaging (fMRI) to investigate the neural substrates of prediction under varying uncertainty based on a natural sampling approach. The study focused particularly on a comparison with other types of externally attributed uncertainty, such as guessing, and on the frontomedian cortex, which is known to be engaged in many types of decisions under uncertainty. On the basis of preceding stimulus cues, participants predicted events that occurred with probabilities ranging from p ϭ 0.6 to p ϭ 1.0. In contrast to certain predictions in a control task, predictions under uncertainty elicited activations within a posterior frontomedian area (mesial BA 8) and within a set of subcortical areas which are known to subserve dopaminergic modulations. The parametric analysis revealed that activation within the mesial BA 8 significantly increased with increasing uncertainty. A comparison with other types of uncertainty indicates that frontomedian correlates of frequency-based prediction appear to be comparable with those induced in long-term stimulus-response adaptation processes such as hypothesis testing, in contrast to those engaged in short-term error processing such as guessing.
People have present-biased preferences: they choose more impatiently when choosing between an immediate reward and a delayed reward, than when choosing between a delayed reward and a more delayed reward. Following McClure et al. [McClure, S.M., Laibson, D.I., Loewenstein, G., Cohen, J.D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503.], we find that areas in the dopaminergic reward system show greater activation when a binary choice set includes both an immediate reward and a delayed reward in contrast to activation measured when the binary choice set contains only delayed rewards. The presence of an immediate reward in the choice set elevates activation of the ventral striatum, pregenual anterior cingulate cortex and anterior medial prefrontal cortex. These dopaminergic reward areas are also responsive to the identity of the recipient of the reward. Even an immediate reward does not activate these dopaminergic regions when the decision is being made for another person. Our results support the hypotheses that participants show less affective engagement (i) when they are making choices for themselves that only involve options in the future or (ii) when they are making choices for someone else. As hypothesized, we also find that behavioral choices reflect more patience when choosing for someone else.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.